Detecting two-party quantum correlations in quantum-key-distribution protocols -: art. no. 022306

被引:45
作者
Curty, M
Gühne, O
Lewenstein, M
Lütkenhaus, N
机构
[1] Univ Erlangen Nurnberg, Inst Theoret Phys 1, Quantum Informat Theory Grp, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, Max Planck Res Grp, D-91058 Erlangen, Germany
[3] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[4] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, A-6020 Innsbruck, Austria
来源
PHYSICAL REVIEW A | 2005年 / 71卷 / 02期
关键词
D O I
10.1103/PhysRevA.71.022306
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A necessary precondition for secure quantum key distribution is that sender and receiver can prove the presence of entanglement in a quantum state that is effectively distributed between them. In order to deliver this entanglement proof one can use the class of entanglement witness (EW) operators that can be constructed from the available measurements results. This class of EWs can be used to provide a necessary and sufficient condition for the existence of quantum correlations even when a quantum state cannot be completely reconstructed. The set of optimal EWs for two well-known entanglement-based (EB) schemes, the six-state and the four-state EB protocols, has been obtained recently [M. Curty , Phys. Rev. Lett. 92, 217903 (2004).] Here we complete these results, now showing specifically the analysis for the case of prepare and measure (PM) schemes. For this, we investigate the signal states and detection methods of the four-state and the two-state PM schemes. For each of these protocols we obtain a reduced set of EWs. More importantly, each set of EWs can be used to derive a necessary and sufficient condition to prove that quantum correlations are present in these protocols.
引用
收藏
页数:12
相关论文
共 87 条
[1]   Multipartite bound information exists and can be activated -: art. no. 107903 [J].
Acín, A ;
Cirac, JI ;
Masanes, L .
PHYSICAL REVIEW LETTERS, 2004, 92 (10) :107903-1
[2]   Equivalence between two-qubit entanglement and secure key distribution -: art. no. 167901 [J].
Acín, A ;
Masanes, L ;
Gisin, N .
PHYSICAL REVIEW LETTERS, 2003, 91 (16) :167901-167901
[3]  
Acin A, 2003, QUANTUM INF COMPUT, V3, P563
[4]  
ACIN A, QUANTPH0310054
[5]  
Bell JS., 1964, PHYS PHYS FIZIKA, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[6]  
Bennett C.H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[7]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[8]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[9]   Enhanced autocompensating quantum cryptography system [J].
Bethune, DS ;
Navarro, M ;
Risk, WP .
APPLIED OPTICS, 2002, 41 (09) :1640-1648
[10]  
BRANDAO FGS, QUANTPH0405008