Predictive Control of Voltage and Current in a Fuel Cell-Ultracapacitor Hybrid

被引:87
作者
Greenwell, Wes [1 ]
Vahidi, Ardalan [1 ]
机构
[1] Clemson Univ, Dept Mech Engn, Clemson, SC 29634 USA
关键词
Energy management; fuel cell; model predictive control; ultracapacitor; POWER-SYSTEM; ELECTRIC VEHICLE; MODEL; MANAGEMENT; DESIGN; IMPLEMENTATION; PERFORMANCE; STRATEGY; BATTERY;
D O I
10.1109/TIE.2009.2031663
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a system integration and control strategy for managing power transients on a Nexa polymer electrolyte membrane fuel cell (FC) with the assistance of an ultracapacitor (UC) module. The two degrees of freedom provided by the use of two dc/dc converters enable the independent low-level control of dc bus voltage and the current split between the FC and UC. The supervisory-level control objectives are to respond to rapid variations in load while minimizing damaging fluctuations in FC current and maintaining the UC charge (or voltage) within allowable bounds. The use of a model predictive control approach which optimally balances the distribution of power between the FC and UC while satisfying the constraints is shown to be an effective method for meeting the supervisory-level objectives. The results are confirmed in experiments.
引用
收藏
页码:1954 / 1963
页数:10
相关论文
共 40 条
[1]   A Proof of Concept Study of Predictive Current Control for VSI-Driven Asymmetrical Dual Three-Phase AC Machines [J].
Barrero, Federico ;
Arahal, Manuel R. ;
Gregor, Raul ;
Toral, Sergio ;
Duran, Mario J. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (06) :1937-1954
[2]   A comparative study of fuel-cell-battery, fuel-cell-ultracapacitor, and fuel-cell-battery-ultracapacitor vehicles [J].
Bauman, Jennifer ;
Kazerani, Mehrdad .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2008, 57 (02) :760-769
[3]   Explicit Model Predictive Control of DC-DC Switched-Mode Power Supplies With Extended Kalman Filtering [J].
Beccuti, Andrea Giovanni ;
Mariethoz, Sebastien ;
Cliquennois, Sebastien ;
Wang, Shu ;
Morari, Manfred .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (06) :1864-1874
[4]   Model predictive control design: New trends and tools [J].
Bemporad, Alberto .
PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, :6678-6683
[5]   Design and Implementation of Model Predictive Control for Electrical Motor Drives [J].
Bolognani, Saverio ;
Bolognani, Silverio ;
Peretti, Luca ;
Zigliotto, Mauro .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (06) :1925-1936
[6]  
Candusso D, 2002, IEEE IND ELEC, P1294, DOI 10.1109/IECON.2002.1185462
[7]   An electrochemical-based fuel-cell model suitable for electrical engineering automation approach [J].
Corrêa, JM ;
Farret, FA ;
Canha, LN ;
Simoes, MG .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2004, 51 (05) :1103-1112
[8]   Predictive Control of an Indirect Matrix Converter [J].
Correa, Pablo ;
Rodriguez, Jose ;
Rivera, Marco ;
Espinoza, Jose R. ;
Kolar, Johann W. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (06) :1847-1853
[9]   Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations [J].
Emadi, A ;
Rajashekara, K ;
Williamson, SS ;
Lukic, SM .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2005, 54 (03) :763-770
[10]   Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell-ultracapacitor hybrid powertrain [J].
Gao, WZ .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2005, 54 (03) :846-855