Optimized electrochemical performance of LiFePO4 at 60°C with purity controlled by SQUID magnetometry

被引:121
作者
Zaghib, K.
Ravet, N.
Gauthier, M.
Gendron, F.
Mauger, A.
Goodenough, J. B.
Julien, C. M.
机构
[1] Inst Rech Hydro Quebec, Varennes, PQ J3X 1S1, Canada
[2] Univ Montreal, Montreal, PQ H3C 3J7, Canada
[3] Phostech Lithium, Boucherville, PQ J4B 7K4, Canada
[4] Univ Paris 06, UMR 7588, INSP, F-75015 Paris, France
[5] CNRS, Dept MIPPU, F-75015 Paris, France
[6] Univ Texas, Austin, TX 78712 USA
关键词
lithium-ion batteries; positive electrodes; olivine structure; magnetic properties; high-temperature performance; POSITIVE-ELECTRODE; LITHIUM; CONDUCTIVITY;
D O I
10.1016/j.jpowsour.2006.09.030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The local structure and magnetic properties of a series of carbon-coated LiFePO4 particles prepared under different conditions are analyzed with X-ray diffractometry (XRD), FTIR and Superconducting Quantum Interference Device (SQUID) magnetometry for comparison. While nano-sized ferromagnetic particles (gamma-Fe2O3 clusters) are detected by magnetic measurements in samples grown from iron(II) oxalate, such ferromagnetic clusters do not exist in the optimized samples grown from FePO4(H2O)(2). FTIR analyses show that carbon does not penetrate significantly inside the LiFePO4 particles despite the fact that it has been very efficient in reduction of Fe 3, to prevent gamma-Fe2O3 clustering, thus pointing to a gas-phase reduction process. The impact of the carbon coating on the electrochemical properties is also reported. No iron dissolution was observed after 200 charge-discharge cycles at 60 degrees C for cells containing lithium foil, lithium titanate or graphite negative electrodes. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:560 / 566
页数:7
相关论文
共 24 条
[1]   FTIR studies of BPO4•2SiO2, BPO4•SiO2 and 2BPO4•SiO2 joints in amorphous and crystalline forms [J].
Adamczyk, A ;
Handke, M ;
Mozgawa, W .
JOURNAL OF MOLECULAR STRUCTURE, 1999, 511 :141-144
[2]   Magnetic studies of the carbothermal effect on LiFePO4 [J].
Ait-Salah, A ;
Zaghib, K ;
Mauger, A ;
Gendron, F ;
Julien, CM .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2006, 203 (01) :R1-R3
[3]  
AITSALAH A, 2005, J POWER SOURCES, V140, P370
[4]  
AITSALAH A, 2005, 207 ESC M QUEB CIT
[5]  
Bacewicz R, 1999, PHYS CHEM GLASSES, V40, P175
[6]   Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source [J].
Bewlay, SL ;
Konstantinov, K ;
Wang, GX ;
Dou, SX ;
Liu, HK .
MATERIALS LETTERS, 2004, 58 (11) :1788-1791
[7]  
Burma C. M., 2004, J ELECTROCHEM SOC, V151, pA1032
[8]   Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J].
Doeff, MM ;
Hu, YQ ;
McLarnon, F ;
Kostecki, R .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) :A207-A209
[9]   Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries [J].
Hu, YQ ;
Doeff, MM ;
Kostecki, R ;
Fiñones, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (08) :A1279-A1285
[10]   Surface studies of carbon films from pyrolyzed photoresist [J].
Kostecki, R ;
Schnyder, B ;
Alliata, D ;
Song, X ;
Kinoshita, K ;
Kötz, R .
THIN SOLID FILMS, 2001, 396 (1-2) :36-43