Satisficing solutions and duality in interval and fuzzy linear programming

被引:88
作者
Inuiguchi, M
Ramik, J
Tanino, T
Vlach, M
机构
[1] Univ Ostrava, Inst Res & Applicat Fuzzy Modeling, Ostrava 70103 1, Czech Republic
[2] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan
[3] Japan Adv Inst Sci & Technol, Grad Sch Informat Sci, Tatsunokuchi 9231292, Japan
关键词
fuzzy relations; fuzzy linear programming; duality; satisficing solution; interval linear programming;
D O I
10.1016/S0165-0114(02)00253-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce a class of fuzzy linear programming problems and define the concepts of feasible and satisficing solutions-the necessary tools for dealing with such problems. In this way, we show that the class of crisp (classical) LP problems can be embedded into the class of FLP ones. Moreover, for FLP problems we define the concept of duality and prove the weak and strong duality theorems. Further, we define a class of interval linear programming problems as a special subclass of FLP problems and apply the previous results to this special case. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:151 / 177
页数:27
相关论文
共 25 条
[1]  
[Anonymous], 1980, EXTREMAL METHODS SYS
[2]  
Dantzig G. B., 1963, LINEAR PROGRAMMING E
[3]  
Delgado M., 1994, Fuzzy optimization: Recent advances
[4]  
Dubois D., 1987, ANAL FUZZY INFORMATI, V1, P3
[5]  
Fodor J.C., 1994, Fuzzy Preference Modelling and Multicriteria Decision Support
[6]  
Hamacher H., 1978, Fuzzy Sets and Systems, V1, P269, DOI 10.1016/0165-0114(78)90018-0
[7]   Possibilistic linear programming:: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem [J].
Inuiguchi, M ;
Ramík, J .
FUZZY SETS AND SYSTEMS, 2000, 111 (01) :3-28
[8]   MODALITY CONSTRAINED PROGRAMMING-PROBLEMS - A UNIFIED APPROACH TO FUZZY MATHEMATICAL-PROGRAMMING PROBLEMS IN THE SETTING OF POSSIBILITY THEORY [J].
INUIGUCHI, M ;
ICHIHASHI, H ;
KUME, Y .
INFORMATION SCIENCES, 1993, 67 (1-2) :93-126
[9]   RELATIONSHIPS BETWEEN MODALITY CONSTRAINED PROGRAMMING-PROBLEMS AND VARIOUS FUZZY MATHEMATICAL-PROGRAMMING PROBLEMS [J].
INUIGUCHI, M ;
ICHIHASHI, H ;
KUME, Y .
FUZZY SETS AND SYSTEMS, 1992, 49 (03) :243-259
[10]   SOME PROPERTIES OF EXTENDED FUZZY PREFERENCE RELATIONS USING MODALITIES [J].
INUIGUCHI, M ;
ICHIHASHI, H ;
KUME, Y .
INFORMATION SCIENCES, 1992, 61 (03) :187-209