Characterization of cluster N5 as a fast-relaxing [4Fe-4S] cluster in the Nqo3 subunit of the proton-translocating NADH-ubiquinone oxidoreductase from Paracoccus denitrificans

被引:40
作者
Yano, T [1 ]
Sklar, J
Nakamaru-Ogiso, E
Takahashi, Y
Yagi, T
Ohnishi, T
机构
[1] Univ Penn, Sch Med, Dept Biochem & Biophys, Johnson Res Fdn, Philadelphia, PA 19104 USA
[2] Scripps Res Inst, Div Biochem, Dept Mol & Expt Med, La Jolla, CA 92037 USA
[3] Osaka Univ, Dept Biol, Grad Sch Sci, Osaka 5600043, Japan
关键词
D O I
10.1074/jbc.M212275200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The NADH-quinone oxidoreductase from Paracoccus denitrificans consists of 14 subunits (Nqol-14) and contains one FMN and eight iron-sulfur clusters. The Nqo3 subunit possesses fully conserved 11 Cys and 1 His in its N-terminal region and is considered to harbor three iron-sulfur clusters; however, only one binuclear (N1b) and one tetranuclear (N4) were previously identified. In this study, the Nqo3 subunit containing 1 x [2Fe-2S] and 2x[4Fe-4S] clusters was expressed in Escherichia coli. The second [4Fe-4S](1+) cluster is detected by EPR spectroscopy below 6 K, exhibiting very fast spin relaxation. The resolved EPR spectrum of this cluster is broad and nearly axial. The subunit exhibits an absorption-type EPR signal around g similar to 5 region below 6 K, most likely arising from an S = 3/2 ground state of the fast-relaxing [4Fe-4S](1+) species. The substitution of the conserved His(106) with Cys specifically affected the fast-relaxing [4Fe-4S](1+) cluster, suggesting that this cluster is coordinated by His(106). In the cholate-treated NDH-1-enriched P. denitrificans membranes, we observed EPR signals arising from a [4Fe-4S] cluster below 6 K exhibiting properties similar to those of cluster N5 detected in other complex I/NDH-1 and of the fast-relaxing [4Fe-4S](1+) cluster in the expressed Nqo3 subunit. Hence, we propose that the His-coordinated [4Fe-4S] cluster corresponds to cluster N5.
引用
收藏
页码:15514 / 15522
页数:9
相关论文
共 53 条
[1]   EPR SIGNAL INTENSITY AND POWDER SHAPES - RE-EXAMINATION [J].
AASA, R ;
VANNGARD, T .
JOURNAL OF MAGNETIC RESONANCE, 1975, 19 (03) :308-315
[2]  
ADAMS MWW, 1987, J BIOL CHEM, V262, P15054
[3]   Function of conserved acidic residues in the PSST homologue of complex I (NADH:Ubiquinone oxidoreductase) from Yarrowia lipolytica [J].
Ahlers, PM ;
Zwicker, K ;
Kerscher, S ;
Brandt, U .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :23577-23582
[4]   INTIMATE-RELATIONSHIPS OF THE LARGE AND THE SMALL SUBUNITS OF ALL NICKEL HYDROGENASES WITH 2 NUCLEAR-ENCODED SUBUNITS OF MITOCHONDRIAL NADH - UBIQUINONE OXIDOREDUCTASE [J].
ALBRACHT, SPJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1144 (02) :221-224
[5]  
Beinert H, 1978, Methods Enzymol, V54, P435
[6]   CATALYTIC SECTOR OF COMPLEX-I (NADH-UBIQUINONE OXIDOREDUCTASE) - SUBUNIT STOICHIOMETRY AND SUBSTRATE-INDUCED CONFORMATION CHANGES [J].
BELOGRUDOV, G ;
HATEFI, Y .
BIOCHEMISTRY, 1994, 33 (15) :4571-4576
[7]   ASSAY OF PROTEINS IN PRESENCE OF INTERFERING MATERIALS [J].
BENSADOUN, A ;
WEINSTEIN, D .
ANALYTICAL BIOCHEMISTRY, 1976, 70 (01) :241-250
[8]   Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I - Identification of two new subunits [J].
Carroll, J ;
Shannon, RJ ;
Fearnley, IM ;
Walker, JE ;
Hirst, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (52) :50311-50317
[9]   Biophysical and structural characterization of proton-translocating NADH-dehydrogenase (complex I) from the strictly aerobic yeast Yarrowia lipolytica [J].
Djafarzadeh, R ;
Kerscher, S ;
Zwicker, K ;
Radermacher, M ;
Lindahl, M ;
Schägger, H ;
Brandt, U .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1459 (01) :230-238
[10]  
Dutton P L, 1978, Methods Enzymol, V54, P411