Tracking deforming objects using particle filtering for geometric active contours

被引:123
作者
Rathi, Yogesh
Vaswani, Namrata
Tannenbaum, Allen
Yezzi, Anthony
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
关键词
tracking; particle filters; geometric active contours;
D O I
10.1109/TPAMI.2007.1081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tracking deforming objects involves estimating the global motion of the object and its local deformations as a function of time. Tracking algorithms using Kalman filters or particle filters have been proposed for finite dimensional representations of shape, but these are dependent on the chosen parametrization and cannot handle changes in curve topology. Geometric active contours provide a framework which is parametrization independent and allow for changes in topology. In the present work, we formulate a particle filtering algorithm in the geometric active contour framework that can be used for tracking moving and deforming objects. To the best of our knowledge, this is the first attempt to implement an approximate particle filtering algorithm for tracking on a ( theoretically) infinite dimensional state space.
引用
收藏
页码:1470 / 1475
页数:6
相关论文
共 37 条
[1]  
[Anonymous], 2001, ADV NEURAL INFORM PR
[2]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[3]  
Blake A., 1998, ACTIVE CONTOURS
[4]   Active contours without edges [J].
Chan, TF ;
Vese, LA .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (02) :266-277
[5]  
Comaniciu D, 2000, PROC CVPR IEEE, P142, DOI 10.1109/CVPR.2000.854761
[6]  
Cremers D, 2002, LECT NOTES COMPUT SC, V2351, P93
[7]  
CREMERS D, 2003, P IEEE WORKSH VAR GE
[8]  
Doucet A., 2001, SEQUENTIAL MONTE CAR, V1, DOI [10.1007/978-1-4757-3437-9, DOI 10.1007/978-1-4757-3437-9]
[9]  
DOUCET A, 1998, 310 CUEDFINFENGTR CA
[10]   NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION [J].
GORDON, NJ ;
SALMOND, DJ ;
SMITH, AFM .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) :107-113