Curvelets and Fourier integral operators

被引:56
作者
Candès, E [1 ]
Demanet, L [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S1631-073X(03)00095-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A recent body of work introduced new tight-frames of curvelets E. Cantles, D. Donoho, in: (i) Curvelets - a suprisingly effective nonadaptive representation for objects with edges (A. Cohen, C. Rabut, L. Schumaker (Eds.)), Vanderbilt University Press, Nashville, 2000, pp. 105-120; (ii) http://www.acm.caltech.edu/similar toemmanuel/publications.html, 2002 to address key problems in approximation theory and image processing. This paper shows that curvelets essentially provide optimally sparse representations of Fourier Integral Operators. (C) 2003 Academic des sciences/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:395 / 398
页数:4
相关论文
共 8 条
[1]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[2]  
CANDES E, 2002, UNPUB CURVELETS WARP
[3]  
Candes E., 2000, CURVELETS SURPRISING
[4]   New multiscale transforms, minimum total variation synthesis:: applications to edge-preserving image reconstruction [J].
Candès, EJ ;
Guo, F .
SIGNAL PROCESSING, 2002, 82 (11) :1519-1543
[5]  
CANDES EJ, 2002, UNPUB NEW TIGHT FRAM
[6]   SPHERICAL SUMMATION MULTIPLIERS [J].
FEFFERMAN, C .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 15 (01) :44-52
[7]  
SMITH H, 1997, J GEOM ANAL, V7
[8]   A parametrix construction for wave equations with C1,1 coefficients [J].
Smith, HF .
ANNALES DE L INSTITUT FOURIER, 1998, 48 (03) :797-+