Subthreshold sodium currents and pacemaking of subthalamic neurons: Modulation by slow inactivation

被引:216
作者
Do, MTH [1 ]
Bean, BP [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Neurobiol, Boston, MA 02115 USA
关键词
D O I
10.1016/S0896-6273(03)00360-X
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neurons of the subthalamic nucleus (STN) are spontaneously active. By voltage clamping dissociated rat STN neurons with their own firing patterns, we found that pacemaking is driven by two kinds of subthreshold sodium current: a steady-state "persistent" sodium current and a dynamic "resurgent" sodium current, which promotes rapid firing by flowing immediately after a spike. These currents are strongly regulated by a process of slow inactivation that is active at physiological firing frequencies. Slow inactivation of the pacemaking sodium currents promotes a constant frequency of tonic firing in the face of small, steady changes in input and constitutes a form of adaptation at the single-cell level. Driving cells at a high rate (75 Hz) produced pronounced slow inactivation (60%-70%) of resurgent, persistent, and transient components of sodium current. This inactivation is likely to contribute to effects of clinical deep-brain stimulation on STN excitability.
引用
收藏
页码:109 / 120
页数:12
相关论文
共 49 条
[1]   LIGHT MICROSCOPIC ANALYSIS OF GOLGI-IMPREGNATED RAT SUBTHALAMIC NEURONS [J].
AFSHARPOUR, S .
JOURNAL OF COMPARATIVE NEUROLOGY, 1985, 236 (01) :1-13
[2]  
Baufreton J, 2003, J NEUROSCI, V23, P816
[3]  
Benazzouz A, 2000, NEUROLOGY, V55, pS13
[4]   REVERSAL OF RIGIDITY AND IMPROVEMENT IN MOTOR-PERFORMANCE BY SUBTHALAMIC HIGH-FREQUENCY STIMULATION IN MPTP-TREATED MONKEYS [J].
BENAZZOUZ, A ;
GROSS, C ;
FEGER, J ;
BORAUD, T ;
BIOULAC, B .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1993, 5 (04) :382-389
[5]   Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat [J].
Benazzouz, A ;
Gao, DM ;
Ni, ZG ;
Piallat, B ;
Bouali-Benazzouz, R ;
Benabid, AL .
NEUROSCIENCE, 2000, 99 (02) :289-295
[6]   THE PRIMATE SUBTHALAMIC NUCLEUS .2. NEURONAL-ACTIVITY IN THE MPTP MODEL OF PARKINSONISM [J].
BERGMAN, H ;
WICHMANN, T ;
KARMON, B ;
DELONG, MR .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 72 (02) :507-520
[7]   REVERSAL OF EXPERIMENTAL PARKINSONISM BY LESIONS OF THE SUBTHALAMIC NUCLEUS [J].
BERGMAN, H ;
WICHMANN, T ;
DELONG, MR .
SCIENCE, 1990, 249 (4975) :1436-1438
[8]   Slowly inactivating sodium current (INaP) underlies single-spike activity in rat subthalamic neurons [J].
Beurrier, C ;
Bioulac, B ;
Hammond, C .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (04) :1951-1957
[9]   High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons [J].
Beurrier, C ;
Bioulac, B ;
Audin, J ;
Hammond, C .
JOURNAL OF NEUROPHYSIOLOGY, 2001, 85 (04) :1351-1356
[10]   Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode [J].
Beurrier, C ;
Congar, P ;
Bioulac, B ;
Hammond, C .
JOURNAL OF NEUROSCIENCE, 1999, 19 (02) :599-609