Performance of heterojunction p+ microcrystalline silicon n crystalline silicon solar cells

被引:43
作者
van Cleef, NWM [1 ]
Rath, JK [1 ]
Rubinelli, FA [1 ]
van der Werf, CHM [1 ]
Schropp, REI [1 ]
van der Weg, WF [1 ]
机构
[1] Univ Utrecht, Debye Res Inst, NL-3508 TA Utrecht, Netherlands
关键词
D O I
10.1063/1.366479
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have studied by Raman spectroscopy and electro-optical characterization the properties of thin boron doped microcrystalline silicon layers deposited by plasma enhanced chemical vapor deposition (PECVD) on crystalline silicon wafers and on amorphous silicon buffer layers. Thin 20-30 nm p(+) mu c-Si:H layers with a considerably large crystalline volume fraction (similar to 22%) and good window properties were deposited on crystalline silicon under moderate PECVD conditions, The performance of heterojunction solar cells incorporating such window layers were critically dependent on the interface quality and the type of buffer layer used. A large improvement of open circuit voltage is observed in these solar cells when a thin 2-3 nm wide band-gap buffer layer of intrinsic a-Si:H deposited at low temperature (similar to 100 degrees C) is inserted between the microcrystalline and crystalline silicon [complete solar cell configuration: A1/(n)c-Si/buffer/p(+)mu c-Si:H/ITO/Ag)]. Detailed modeling studies showed that the wide band-gap a-Si:H buffer layer is able to prevent electron backdiffusion into the p(+) mu c-Si:H layer due to the discontinuity in the conduction band at the amorphous-crystalline silicon interface, thereby reducing the high recombination losses in the microcrystalline layer. At the same time, the discontinuity in the valence band is not limiting the hole exit to the front contact and does not deteriorate the solar cell performance. The defect density inside the crystalline silicon close to the amorphous-crystalline interface has a strong effect on the operation of the cell. dAn extra atomic hydrogen passivation treatment prior to buffer layer deposition, in order to reduce the number of these defects, did further enhance the values of V-oc and fill factor, resulting in an efficiency of 12.2% for a cell without a back surface field and texturization. (C) 1997 American Institute of Physics.
引用
收藏
页码:6089 / 6095
页数:7
相关论文
共 18 条
[1]  
DAEY OJ, 1994, P 12 EUR PHOT SOL EN, P1296
[2]   HIGHLY CONDUCTIVE P-TYPE MICROCRYSTALLINE SILICON-CARBIDE PREPARED BY PHOTOCHEMICAL VAPOR-DEPOSITION [J].
DASGUPTA, A ;
GHOSH, S ;
RAY, S .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1995, 14 (15) :1037-1040
[3]  
HAMAKAWA Y, 1990, MATER RES SOC SYMP P, V164, P291, DOI 10.1557/PROC-164-291
[4]   RAMAN-SCATTERING FROM HYDROGENATED MICROCRYSTALLINE AND AMORPHOUS-SILICON [J].
IQBAL, Z ;
VEPREK, S .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (02) :377-392
[5]   PASSIVATION PROPERTIES OF AMORPHOUS AND MICROCRYSTALLINE SILICON LAYERS DEPOSITED BY VHF-GD FOR CRYSTALLINE SILICON SOLAR-CELLS [J].
KEPPNER, H ;
TORRES, P ;
FLUCKIGER, R ;
MEIER, J ;
SHAH, A ;
FORTMANN, C ;
FATH, P ;
WILLEKE, G ;
HAPPLE, K ;
KIESS, H .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1994, 34 (1-4) :201-209
[6]  
Luft W., 1993, HYDROGENATED AMORPHO
[7]   A NEW MODULAR MULTICHAMBER PLASMA-ENHANCED CHEMICAL-VAPOR-DEPOSITION SYSTEM [J].
MADAN, A ;
RAVA, P ;
SCHROPP, REI ;
VONROEDERN, B .
APPLIED SURFACE SCIENCE, 1993, 70-1 (1 -4 pt B) :716-721
[8]   DEPOSITION OF DEVICE QUALITY, LOW H CONTENT AMORPHOUS-SILICON [J].
MAHAN, AH ;
CARAPELLA, J ;
NELSON, BP ;
CRANDALL, RS ;
BALBERG, I .
JOURNAL OF APPLIED PHYSICS, 1991, 69 (09) :6728-6730
[9]  
MELHELEY PJ, 1990, J APPL PHYS, V67, P3803
[10]  
PANKOVE JI, 1992, MATER RES SOC S P, V262, P309