Lattice Boltzmann simulations of drop deformation and breakup in shear flows

被引:55
作者
Inamuro, T [1 ]
Tomita, R [1 ]
Ogino, F [1 ]
机构
[1] Kyoto Univ, Dept Chem Engn, Grad Sch Engn, Kyoto 6068501, Japan
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2003年 / 17卷 / 1-2期
关键词
D O I
10.1142/S0217979203017035
中图分类号
O59 [应用物理学];
学科分类号
摘要
A lattice Boltzmann method for multicomponent immiscible fluids is applied to simulations of drop deformation and breakup in shear flows for various capillary numbers and viscosity ratios at three different Reynolds numbers, Re = 0.2, 1, 10. The effect of the Reynolds number on drop deformation and breakup in shear flows is investigated. It is found that the drop is easier to deform and to be ruptured as the Reynolds number increases.
引用
收藏
页码:21 / 26
页数:6
相关论文
共 18 条
[1]   DEFORMATION OF A DROP IN A GENERAL TIME-DEPENDENT FLUID FLOW [J].
COX, RG .
JOURNAL OF FLUID MECHANICS, 1969, 37 :601-&
[2]  
DEBRUIJN RA, 1989, THESIS TU EINDHOVEN
[4]   LATTICE BOLTZMANN MODEL OF IMMISCIBLE FLUIDS [J].
GUNSTENSEN, AK ;
ROTHMAN, DH ;
ZALESKI, S ;
ZANETTI, G .
PHYSICAL REVIEW A, 1991, 43 (08) :4320-4327
[5]   A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability [J].
He, XY ;
Chen, SY ;
Zhang, RY .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (02) :642-663
[6]   Accuracy of the lattice boltzmann method for small Knudsen number with finite Reynolds number [J].
Inamuro, T ;
Yoshino, M ;
Ogino, F .
PHYSICS OF FLUIDS, 1997, 9 (11) :3535-3542
[7]  
Inamuro T, 2001, COMPUTATIONAL FLUID DYNAMICS 2000, P499
[8]   NON-SLIP BOUNDARY-CONDITION FOR LATTICE BOLTZMANN SIMULATIONS [J].
INAMURO, T ;
YOSHINO, M ;
OGINO, F .
PHYSICS OF FLUIDS, 1995, 7 (12) :2928-2930
[9]   A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach [J].
Inamuro, T ;
Konishi, N ;
Ogino, F .
COMPUTER PHYSICS COMMUNICATIONS, 2000, 129 (1-3) :32-45
[10]   Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method [J].
Li, J ;
Renardy, YY ;
Renardy, M .
PHYSICS OF FLUIDS, 2000, 12 (02) :269-282