Recombinant brassinosteroid insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved peptide motif in vitro

被引:134
作者
Oh, MH
Ray, WK
Huber, SC
Asara, JM
Gage, DA
Clouse, SD [1 ]
机构
[1] N Carolina State Univ, Dept Hort Sci, Raleigh, NC 27695 USA
[2] N Carolina State Univ, USDA ARS, Raleigh, NC 27695 USA
[3] N Carolina State Univ, Dept Crop Sci, Raleigh, NC 27695 USA
[4] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
[5] Michigan State Univ, Dept Biochem, E Lansing, MI 48824 USA
关键词
D O I
10.1104/pp.124.2.751
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BRASSINOSTEROID-INSENSITIVE 1 (BRI1) encodes a putative Leucine-rich repeat receptor kinase in Arabidopsis that has been shown by genetic and molecular analysis to be a critical component of brassinosteroid signal transduction. In this study we examined some of the biochemical properties of the BRI1 kinase domain (BRI1-KD) in vitro, which might be important predictors of in vivo function. Recombinant BRI1-KD autophosphorylated on serine (Ser) and threonine (Thr) residues with p-Ser predominating. Matrix-assisted laser desorption/ionization mass spectrometry identified a minimum of 12 sites of autophosphorylation in the cytoplasmic domain of BRI1, including five in the juxtamembrane region (N-terminal to the catalytic KD), five in the KD tone each in sub-domains I and VIa and three in sub-domain VIII), and two in the carboxy terminal region. Five of the sites were uniquely identified (Ser-838, Thr-842, Thr-846, Ser-858, and Thr-872), whereas seven were localized on short peptides but remain ambiguous due to multiple Ser and/or Thr residues within these peptides. The inability of an active BRI1-KD to transphosphorylate an inactive mutant KD suggests that the mechanism of autophosphorylation is intramolecular. It is interesting that recombinant BRI1-KD was also found to phosphorylate certain synthetic peptides in vitro. To identify possible structural elements required for substrate recognition by BRI1 KD, a series of synthetic peptides were evaluated, indicating that optimum phosphorylation of the peptide required R or K residues at P - 3, P - 4, and P + 5 (relative to the phosphorylated Ser at P = 0).
引用
收藏
页码:751 / 765
页数:15
相关论文
共 51 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   Phosphopeptide analysis by matrix-assisted laser desorption time-of-flight mass spectrometry [J].
Annan, RS ;
Carr, SA .
ANALYTICAL CHEMISTRY, 1996, 68 (19) :3413-3421
[3]   Enhanced detection of phosphopeptides in matrix-assisted laser desorption/ionization mass spectrometry using ammonium salts [J].
Asara, JM ;
Allison, J .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1999, 10 (01) :35-44
[4]   Immunological evidence that HMG-CoA reductase kinase-A is the cauliflower homologue of the RKIN1 subfamily of plant protein kinases [J].
Ball, KL ;
Barker, J ;
Halford, NG ;
Hardie, DG .
FEBS LETTERS, 1995, 377 (02) :189-192
[5]   Two members of the thioredoxin-h family interact with the kinase domain of a Brassica S locus receptor kinase [J].
Bower, MS ;
Matias, DD ;
FernandesCarvalho, E ;
Mazzurco, M ;
Gu, TS ;
Rothstein, SJ ;
Goring, DR .
PLANT CELL, 1996, 8 (09) :1641-1650
[6]   Interaction of the maize and Arabidopsis kinase interaction domains with a subset of receptor-like protein kinases: Implications for transmembrane signaling in plants [J].
Braun, DM ;
Stone, JM ;
Walker, JC .
PLANT JOURNAL, 1997, 12 (01) :83-95
[7]   Plant transmembrane receptors: New pieces in the signaling puzzle [J].
Braun, DM ;
Walker, JC .
TRENDS IN BIOCHEMICAL SCIENCES, 1996, 21 (02) :70-73
[8]   THE TMK1-GENE FROM ARABIDOPSIS CODES FOR A PROTEIN WITH STRUCTURAL AND BIOCHEMICAL CHARACTERISTICS OF A RECEPTOR PROTEIN-KINASE [J].
CHANG, C ;
SCHALLER, GE ;
PATTERSON, SE ;
KWOK, SF ;
MEYEROWITZ, EM ;
BLEECKER, AB .
PLANT CELL, 1992, 4 (10) :1263-1271
[9]   A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development [J].
Clouse, SD ;
Langford, M ;
McMorris, TC .
PLANT PHYSIOLOGY, 1996, 111 (03) :671-678
[10]  
Clouse SD, 1999, BRASSINOSTEROIDS, P163