Computing the selection gradient and evolutionary response of an infinite-dimensional trait

被引:22
作者
Beder, JH [1 ]
Gomulkiewicz, R
机构
[1] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Washington State Univ, Dept Pure & Appl Math, Pullman, WA 99164 USA
[3] Washington State Univ, Dept Genet & Cell Biol, Pullman, WA 99164 USA
关键词
evolutionary response; Gaussian process; infinite-dimensional trait; reproducing kernel Hilbert space; selection gradient;
D O I
10.1007/s002850050102
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Following the results developed in a previous paper, an equation describing the evolutionary response to selection is extended from finite-to infinite-dimensional traits. The selection gradient and evolutionary response are then computed for a large class of infinite-dimensional traits of broad biological interest. In this framework, traits are modeled as Gaussian processes, and reproducing kernel Hilbert spaces constitute a primary tool.
引用
收藏
页码:299 / 319
页数:21
相关论文
共 19 条
[1]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[2]   A SIEVE ESTIMATOR FOR THE MEAN OF A GAUSSIAN PROCESS [J].
BEDER, JH .
ANNALS OF STATISTICS, 1987, 15 (01) :59-78
[3]  
Bulmer M. G., 1985, MATH THEORY QUANTITA
[4]  
CARTIER P, 1981, MATH ANAL APPL A
[5]   PHENOTYPIC EVOLUTION UNDER FISHER FUNDAMENTAL THEOREM OF NATURAL-SELECTION [J].
CHARNOV, EL .
HEREDITY, 1989, 62 :113-116
[7]  
Falconer D. S., 1989, Introduction to quantitative genetics.
[8]  
GAVRILETS S, 1994, EVOLUTION, V48, P1478, DOI [10.1111/j.1558-5646.1994.tb02190.x, 10.2307/2410242]
[9]  
GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI [10.2307/2409860, 10.1111/j.1558-5646.1992.tb02047.x]
[10]   The selection gradient of an infinite-dimensional trait [J].
Gomulkiewicz, R ;
Beder, JH .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (02) :509-523