Model energy landscapes and the force-induced dissociation of ligand-receptor bonds

被引:117
作者
Strunz, T [1 ]
Oroszlan, K [1 ]
Schumakovitch, I [1 ]
Güntherodt, HJ [1 ]
Hegner, M [1 ]
机构
[1] Univ Basel, Dept Phys & Astron, CH-4056 Basel, Switzerland
关键词
D O I
10.1016/S0006-3495(00)76375-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We discuss models for the force-induced dissociation of a ligand-receptor bond, occurring in the context of cell adhesion or single molecule unbinding force measurements. We consider a bond with a structured energy landscape which is modeled by a network of force dependent transition rates between intermediate states. The behavior of a model with only one intermediate state and a model describing a molecular zipper is studied. We calculate the bond lifetime as a function of an applied force and unbinding forces under an increasing applied load and determine the relationship between both quantities. The dissociation via an intermediate state can lead to distinct functional relations of the bond lifetime on force. One possibility is the occurrence of three force regimes where the lifetime of the bond is determined by different transitions within the energy landscape. This case can be related to recent experimental observations of the force-induced dissociation of single avidin-biotin bonds.
引用
收藏
页码:1206 / 1212
页数:7
相关论文
共 33 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   Detection of antigen-antibody binding events with the atomic force microscope [J].
Allen, S ;
Chen, XY ;
Davies, J ;
Davies, MC ;
Dawkes, AC ;
Edwards, JC ;
Roberts, CJ ;
Sefton, J ;
Tendler, SJB ;
Williams, PM .
BIOCHEMISTRY, 1997, 36 (24) :7457-7463
[3]   SLOW RELAXATIONAL PROCESSES IN THE MELTING OF LINEAR BIO-POLYMERS - A THEORY AND ITS APPLICATION TO NUCLEIC-ACIDS [J].
ANSHELEVICH, VV ;
VOLOGODSKII, AV ;
LUKASHIN, AV ;
FRANKKAMENETSKII, MD .
BIOPOLYMERS, 1984, 23 (01) :39-58
[4]   Reconstructing potential energy functions from simulated force-induced unbinding processes [J].
Balsera, M ;
Stepaniants, S ;
Izrailev, S ;
Oono, Y ;
Schulten, K .
BIOPHYSICAL JOURNAL, 1997, 73 (03) :1281-1287
[5]  
BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
[6]   Ligand-receptor interactions [J].
Bongrand, P .
REPORTS ON PROGRESS IN PHYSICS, 1999, 62 (06) :921-968
[7]   Mechanical and chemical unfolding of a single protein: A comparison [J].
Carrion-Vazquez, M ;
Oberhauser, AF ;
Fowler, SB ;
Marszalek, PE ;
Broedel, SE ;
Clarke, J ;
Fernandez, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3694-3699
[8]   The forward rate of binding of surface-tethered reactants: Effect of relative motion between two surfaces [J].
Chang, KC ;
Hammer, DA .
BIOPHYSICAL JOURNAL, 1999, 76 (03) :1280-1292
[9]   BINDING STRENGTH BETWEEN CELL-ADHESION PROTEOGLYCANS MEASURED BY ATOMIC-FORCE MICROSCOPY [J].
DAMMER, U ;
POPESCU, O ;
WAGNER, P ;
ANSELMETTI, D ;
GUNTHERODT, HJ ;
MISEVIC, GN .
SCIENCE, 1995, 267 (5201) :1173-1175
[10]   Specific antigen/antibody interactions measured by force microscopy [J].
Dammer, U ;
Hegner, M ;
Anselmetti, D ;
Wagner, P ;
Dreier, M ;
Huber, W ;
Guntherodt, HJ .
BIOPHYSICAL JOURNAL, 1996, 70 (05) :2437-2441