Reactions of semivolatile organics and their effects on secondary organic aerosol formation

被引:105
作者
Kroll, Jesse H.
Chan, Arthur W. H.
Ng, Nga L.
Flagan, Richard C.
Seinfeld, John H. [1 ]
机构
[1] CALTECH, Dept Environm Sci & Engn, Pasadena, CA 91125 USA
[2] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA
关键词
D O I
10.1021/es062059x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Secondary organic aerosol (SOA) constitutes a significant fraction of total atmospheric particulate loading, but there is evidence that SOA yields based on laboratory studies may underestimate atmospheric SOA. Here we present chamber data on SOA growth from the photooxidation of aromatic hydrocarbons, finding that SOA yields are systematically lower when inorganic seed particles are not initially present. This indicates that concentrations of semivolatile oxidation products are influenced by processes beyond gas-particle partitioning, such as chemical reactions and/or loss to chamber walls. Predictions of a kinetic model in which semivolatile compounds may undergo reactions in both the gas and particle phases in addition to partitioning are qualitatively consistent with the observed seed effect, as well as with a number of other recently observed features of SOA formation chemistry. The behavior arises from a kinetic competition between uptake to the particle phase and reactive loss of the semivolatile product. It is shown that when hydrocarbons react in the absence of preexisting organic aerosol, such loss processes may lead to measured SOA yields lower than would occur under atmospheric conditions. These results underscore the need to conduct studies of SOA formation in the presence of atmospherically relevant aerosol loadings.
引用
收藏
页码:3545 / 3550
页数:6
相关论文
共 37 条
[1]   Mathematical model for gas-particle partitioning of secondary organic aerosols [J].
Bowman, FM ;
Odum, JR ;
Seinfeld, JH ;
Pandis, SN .
ATMOSPHERIC ENVIRONMENT, 1997, 31 (23) :3921-3931
[2]   The effect of water on gas-particle partitioning of secondary organic aerosol:: II.: m-xylene and 1,3,5-trimethylbenzene photooxidation systems [J].
Cocker, DR ;
Mader, BT ;
Kalberer, M ;
Flagan, RC ;
Seinfeld, JH .
ATMOSPHERIC ENVIRONMENT, 2001, 35 (35) :6073-6085
[3]   State-of-the-art chamber facility for studying atmospheric aerosol chemistry [J].
Cocker, DR ;
Flagan, RC ;
Seinfeld, JH .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (12) :2594-2601
[4]   Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002 [J].
de Gouw, JA ;
Middlebrook, AM ;
Warneke, C ;
Goldan, PD ;
Kuster, WC ;
Roberts, JM ;
Fehsenfeld, FC ;
Worsnop, DR ;
Canagaratna, MR ;
Pszenny, AAP ;
Keene, WC ;
Marchewka, M ;
Bertman, SB ;
Bates, TS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D16) :1-22
[5]   Particle phase acidity and oligomer formation in secondary organic aerosol [J].
Gao, S ;
Ng, NL ;
Keywood, M ;
Varutbangkul, V ;
Bahreini, R ;
Nenes, A ;
He, JW ;
Yoo, KY ;
Beauchamp, JL ;
Hodyss, RP ;
Flagan, RC ;
Seinfeld, JH .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (24) :6582-6589
[6]   Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and α-pinene [J].
Gao, S ;
Keywood, M ;
Ng, NL ;
Surratt, J ;
Varutbangkul, V ;
Bahreini, R ;
Flagan, RC ;
Seinfeld, JH .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (46) :10147-10164
[7]   UV photodissociation spectroscopy of oxidized undecylenic acid films [J].
Gomez, AL ;
Park, J ;
Walser, ML ;
Lin, A ;
Nizkorodov, SA .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (10) :3584-3592
[8]   Secondary organic aerosol formation by glyoxal hydration and oligomer formation: Humidity effects and equilibrium shifts during analysis [J].
Hastings, WP ;
Koehler, CA ;
Bailey, EL ;
De Haan, DO .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (22) :8728-8735
[9]   A large organic aerosol source in the free troposphere missing from current models [J].
Heald, CL ;
Jacob, DJ ;
Park, RJ ;
Russell, LM ;
Huebert, BJ ;
Seinfeld, JH ;
Liao, H ;
Weber, RJ .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (18) :1-4
[10]   Aerosol-chamber study of the α-pinene/O3 reaction:: influence of particle acidity on aerosol yields and products [J].
Iinuma, Y ;
Böge, O ;
Gnauk, T ;
Herrmann, H .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (05) :761-773