New role of zCRY and zPER2 as regulators of sub-cellular distributions of zCLOCK and zBMAL proteins

被引:28
作者
Hirayama, J [1 ]
Fukuda, I [1 ]
Ishikawa, T [1 ]
Kobayashi, Y [1 ]
Todo, T [1 ]
机构
[1] Kyoto Univ, Ctr Radiat Biol, Sakyo Ku, Kyoto 6068501, Japan
关键词
D O I
10.1093/nar/gkg174
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The core oscillator that generates circadian rhythm in eukaryotes consists of transcription/translation-based autoregulatory feedback loops by which clock gene products negatively regulate their own expression. Control of the accumulation and nuclear entry of the negative regulators PER and CRY is believed to be a key step in these loops. We clarified the mutual interaction between zebrafish clock-related proteins and their sub-cellular localizations in NIH3T3 cells. Six CRYs exist in zebrafish, of which zCRY1a strongly represses zCLOCK1: zBMAL3-mediated transcription, but zCRY3 does not. We show that zCRY1a interacts with zCLOCK1 and zBMAL3, facilitating nuclear accumulation, whereas zCRY3 associates with neither one and does not influence their sub-cellular distributions. We cloned zPer2 cDNA and showed that the protein product encoded by the cDNA acts as a moderate transcriptional repressor. In our sub-cellular localization studies we also found that zPER2 interacts with the zCLOCK1:zBMAL3 heterodimer, causing its cytoplasmic retention. zCRY1a and zPER2 apparently have opposite effects on the sub-cellular distribution of zCLOCK:zBMAL heterodimer. We speculate that the opposite regulation of the sub-cellular distribution of this is associated with the different transcriptional repression abilities of zCRY1a and zPER2. zCRY1a acts as a potent transcriptional inhibitor by interacting directly with the zCLOCK:zBMAL heterodimer in the nucleus, whereas zPER2 maintains the zCLOCK:zBMAL heterodimer in the cytoplasm, resulting in transactivation repression.
引用
收藏
页码:935 / 943
页数:9
相关论文
共 36 条
[1]   Two novel Kruppel-associated box-containing zinc-finger proteins, KRAZ1 and KRAZ2, repress transcription through functional interaction with the corepressor KAP-1 (TIF1β/KRIP-1) [J].
Agata, Y ;
Matsuda, E ;
Shimizu, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (23) :16412-16422
[2]   Control of intracellular dynamics of mammalian period proteins by casein kinase I ε (CKIε) and CKIδ in cultured cells [J].
Akashi, M ;
Tsuchiya, Y ;
Yoshino, T ;
Nishida, E .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (06) :1693-1703
[3]   Clock mechanisms in zebrafish [J].
Cahill, GM .
CELL AND TISSUE RESEARCH, 2002, 309 (01) :27-34
[4]   Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function [J].
Cermakian, N ;
Whitmore, D ;
Foulkes, NS ;
Sassone-Corsi, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (08) :4339-4344
[5]   Light induction of a vertebrate clock gene involves signaling through blue-light receptors and MAP kinases [J].
Cermakian, N ;
Pando, MP ;
Thompson, CL ;
Pinchak, AB ;
Selby, CP ;
Gutierrez, L ;
Wells, DE ;
Cahill, GM ;
Sancar, A ;
Sassone-Corsi, P .
CURRENT BIOLOGY, 2002, 12 (10) :844-848
[6]   14-3-3σ is required to prevent mitotic catastrophe after DNA damage [J].
Chan, TA ;
Hermeking, H ;
Lengauer, C ;
Kinzler, KW ;
Vogelstein, B .
NATURE, 1999, 401 (6753) :616-620
[7]   Molecular bases for circadian clocks [J].
Dunlap, JC .
CELL, 1999, 96 (02) :271-290
[8]   The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iε [J].
Eide, EJ ;
Vielhaber, EL ;
Hinz, WA ;
Virshup, DM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (19) :17248-17254
[9]   ISOLATION OF TIMELESS BY PER PROTEIN-INTERACTION - DEFECTIVE INTERACTION BETWEEN TIMELESS PROTEIN AND LONG-PERIOD MUTANT PER(L) [J].
GEKAKIS, N ;
SAEZ, L ;
DELAHAYEBROWN, AM ;
MYERS, MP ;
SEHGAL, A ;
YOUNG, MW ;
WEITZ, CJ .
SCIENCE, 1995, 270 (5237) :811-815
[10]   Light-independent role of CRY1 and CRY2 in the mammalian circadian clock [J].
Griffin, EA ;
Staknis, D ;
Weitz, CJ .
SCIENCE, 1999, 286 (5440) :768-771