The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity

被引:99
作者
Block, Anna [1 ,2 ]
Guo, Ming [1 ,2 ]
Li, Guangyong [1 ,2 ]
Elowsky, Christian [3 ]
Clemente, Thomas E. [1 ,3 ]
Alfano, James R. [1 ,2 ]
机构
[1] Univ Nebraska, Ctr Plant Sci Innovat, Lincoln, NE 68583 USA
[2] Univ Nebraska, Dept Plant Pathol, Lincoln, NE 68583 USA
[3] Univ Nebraska, Ctr Biotechnol, Lincoln, NE USA
基金
美国农业部; 美国国家卫生研究院; 美国国家科学基金会;
关键词
SECRETION SYSTEM EFFECTORS; PROGRAMMED CELL-DEATH; PV. TOMATO DC3000; ALTERNATIVE OXIDASE; DISEASE RESISTANCE; BACTERIAL DISEASE; ARABIDOPSIS; PROTEIN; VIRULENCE; GENES;
D O I
10.1111/j.1462-5822.2009.01396.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
P>The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1's N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1's target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions.
引用
收藏
页码:318 / 330
页数:13
相关论文
共 59 条
[1]   Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death [J].
Abramovitch, RB ;
Kim, YJ ;
Chen, SR ;
Dickman, MB ;
Martin, GB .
EMBO JOURNAL, 2003, 22 (01) :60-69
[2]   Bacterial elicitation and evasion of plant innate immunity [J].
Abramovitch, Robert B. ;
Anderson, Jeffrey C. ;
Martin, Gregory B. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (08) :601-611
[3]   Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana [J].
Adam, L ;
Somerville, SC .
PLANT JOURNAL, 1996, 9 (03) :341-356
[4]   The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants [J].
Alfano, JR ;
Charkowski, AO ;
Deng, WL ;
Badel, JL ;
Petnicki-Ocwieja, T ;
van Dijk, K ;
Collmer, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) :4856-4861
[5]   Type III secretion system effector proteins: Double agents in bacterial disease and plant defense [J].
Alfano, JR ;
Collmer, A .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :385-414
[6]   Are innate immune signaling pathways in plants and animals conserved? [J].
Ausubel, FM .
NATURE IMMUNOLOGY, 2005, 6 (10) :973-979
[7]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[8]   Phytopathogen type III effector weaponry and their plant targets [J].
Block, Anna ;
Li, Guangyong ;
Fu, Zheng Qing ;
Alfano, James R. .
CURRENT OPINION IN PLANT BIOLOGY, 2008, 11 (04) :396-403
[9]   Host-microbe interactions: Shaping the evolution of the plant immune response [J].
Chisholm, ST ;
Coaker, G ;
Day, B ;
Staskawicz, BJ .
CELL, 2006, 124 (04) :803-814
[10]   Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin [J].
Coaker, G ;
Falick, A ;
Staskawicz, B .
SCIENCE, 2005, 308 (5721) :548-550