Aldehyde Dehydrogenase 2 in Cardiac Protection: A New Therapeutic Target?

被引:98
作者
Budas, Grant R. [1 ]
Disatnik, Marie-Helene [1 ]
Mochly-Rosen, Dana [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Chem & Syst Biol, CCSR, Stanford, CA 94305 USA
关键词
MITOCHONDRIAL PERMEABILITY TRANSITION; NITRIC-OXIDE; LIPID-PEROXIDATION; INDUCED CARDIOPROTECTION; GLYCERYL TRINITRATE; REPERFUSION INJURY; EPSILON-PKC; HEART; NITROGLYCERIN; ACTIVATION;
D O I
10.1016/j.tcm.2009.09.003
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is emerging as a key enzyme involved in cytoprotection in the heart. ALDH2 mediates both the detoxification of reactive aldehydes such as acetaldehyde and 4-hydroxy-2-nonenal and the bioactivation of nitroglycerin to nitric oxide. In addition, chronic nitrate treatment results in ALDH2 inhibition and contributes to nitrate tolerance. Our laboratory recently identified ALDH2 to be a key mediator of endogenous cytoprotection. We reported that ALDH2 is phosphorylated and activated by the survival kinase protein kinase C epsilon and found a strong inverse correlation between ALDH2 activity and infarct size. We also identified a small molecule ALDH2 activator which reduces myocardial infarct size induced by ischemia/reperfusion in vivo. In this review, we discuss evidence that ALDH2 is a key mediator of endogenous survival signaling in the heart, suggest possible cardioprotective mechanisms mediated by ALDH2 and discuss potential clinical implications of these findings. (Trends Cardiovasc Med 2009;19:158-164) (C) 2009, Elsevier Inc.
引用
收藏
页码:158 / 164
页数:7
相关论文
共 59 条
[1]   PRECONDITIONING OF ISOLATED RABBIT CARDIOMYOCYTES - INDUCTION BY METABOLIC STRESS AND BLOCKADE BY THE ADENOSINE ANTAGONIST SPT AND CALPHOSTIN-C, A PROTEIN-KINASE-C INHIBITOR [J].
ARMSTRONG, S ;
DOWNEY, JM ;
GANOTE, CE .
CARDIOVASCULAR RESEARCH, 1994, 28 (01) :72-77
[2]   NITRIC-OXIDE ACTIVATES GUANYLATE CYCLASE AND INCREASES GUANOSINE 3'-5'-CYCLIC MONOPHOSPHATE LEVELS IN VARIOUS TISSUE PREPARATIONS [J].
ARNOLD, WP ;
MITTAL, CK ;
KATSUKI, S ;
MURAD, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (08) :3203-3207
[3]   Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death [J].
Baines, CP ;
Kaiser, RA ;
Purcell, NH ;
Blair, NS ;
Osinska, H ;
Hambleton, MA ;
Brunskill, EW ;
Sayen, MR ;
Gottlieb, RA ;
Dorn, GW ;
Robbins, J ;
Molkentin, JD .
NATURE, 2005, 434 (7033) :658-662
[4]   Protein kinase Cε interacts with and inhibits the permeability transition pore in cardiac mitochondria [J].
Baines, CP ;
Song, CX ;
Zheng, YT ;
Wang, GW ;
Zhang, J ;
Wang, OL ;
Guo, Y ;
Bolli, R ;
Cardwell, EM ;
Ping, PP .
CIRCULATION RESEARCH, 2003, 92 (08) :873-880
[5]  
Beretta M, 2008, J BIOL CHEM, V283, P17873, DOI [10.1074/jbc.M801182200, 10.1074/jbc.M804001200]
[6]   4-HYDROXYRMONENAL, A NOVEL INDICATOR OF LIPID-PEROXIDATION FOR REPERFUSION INJURY OF THE MYOCARDIUM [J].
BLASIG, IE ;
GRUNE, T ;
SCHONHEIT, K ;
ROHDE, E ;
JAKSTADT, M ;
HASELOFF, RF ;
SIEMS, WG .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1995, 269 (01) :H14-H22
[7]   DIRECT EVIDENCE THAT OXYGEN-DERIVED FREE-RADICALS CONTRIBUTE TO POSTISCHEMIC MYOCARDIAL DYSFUNCTION IN THE INTACT DOG [J].
BOLLI, R ;
JEROUDI, MO ;
PATEL, BS ;
DUBOSE, CM ;
LAI, EK ;
ROBERTS, R ;
MCCAY, PB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (12) :4695-4699
[8]   Preconditioning: a paradigm shift in the biology of myocardial ischemia [J].
Bolli, Roberto .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2007, 292 (01) :H19-H27
[9]   Protein kinase C-α and -ε modulate connexin-43 phosphorylation in human heart [J].
Bowling, N ;
Huang, XD ;
Sandusky, GE ;
Fouts, RL ;
Mintze, K ;
Esterman, M ;
Allen, PD ;
Maddi, R ;
McCall, E ;
Vlahos, CJ .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2001, 33 (04) :789-798
[10]  
BRIEN JF, 1988, J PHARMACOL EXP THER, V244, P322