Slow synaptic inhibition mediated by metabotropic glutamate receptor activation of GIRK channels

被引:38
作者
Dutar, P [1 ]
Petrozzino, JJ [1 ]
Vu, HM [1 ]
Schmidt, MF [1 ]
Perkel, DJ [1 ]
机构
[1] Univ Penn, Dept Neurosci, Philadelphia, PA 19104 USA
关键词
D O I
10.1152/jn.2000.84.5.2284
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Glutamate is the predominant excitatory neurotransmitter in the vertebrate CNS. Ionotropic glutamate receptors mediate fast excitatory actions whereas metabotropic glutamate receptors (mGluRs) mediate a variety of slower effects. For example, mGluRs can mediate presynaptic inhibition, postsynaptic excitation, or, more rarely, postsynaptic inhibition. We previously described an unusually slow form of postsynaptic inhibition in one class of projection neuron in the song-control nucleus HVc of the songbird forebrain. These neurons, which participate in a circuit that is essential for vocal learning, exhibit an inhibitory postsynaptic potential (IPSP) that lasts several seconds. Only a portion of this slow IPSP is mediated by GABAB receptors. Since these cells are strongly hyperpolarized by agonists of mGluRs, we used intracellular recording from brain slices to investigate the mechanism of this hyperpolarization and to determine whether mGluRs contribute to the slow synaptic inhibition. We report that mGluRs hyperpolarize these HVc neurons by activating G protein-coupled, inwardly-rectifying potassium (GIRK) channels. MGluR antagonists blocked this response and the slow synaptic inhibition. Thus, glutamate can combine with GABA to mediate slow synaptic inhibition by activating GIRK channels in the CNS.
引用
收藏
页码:2284 / 2290
页数:7
相关论文
共 54 条
[1]   QX-314 BLOCKS THE POTASSIUM BUT NOT THE SODIUM-DEPENDENT COMPONENT OF THE OPIATE RESPONSE IN LOCUS-CERULEUS NEURONS [J].
ALREJA, M ;
AGHAJANIAN, GK .
BRAIN RESEARCH, 1994, 639 (02) :320-324
[2]   BLOCKADE OF NEUROTRANSMITTER-ACTIVATED K+ CONDUCTANCE BY QX-314 IN THE RAT HIPPOCAMPUS [J].
ANDRADE, R .
EUROPEAN JOURNAL OF PHARMACOLOGY, 1991, 199 (02) :259-262
[3]   A-G PROTEIN COUPLES SEROTONIN AND GABA-B RECEPTORS TO THE SAME CHANNELS IN HIPPOCAMPUS [J].
ANDRADE, R ;
MALENKA, RC ;
NICOLL, RA .
SCIENCE, 1986, 234 (4781) :1261-1265
[4]   FOREBRAIN LESIONS DISRUPT DEVELOPMENT BUT NOT MAINTENANCE OF SONG IN PASSERINE BIRDS [J].
BOTTJER, SW ;
MIESNER, EA ;
ARNOLD, AP .
SCIENCE, 1984, 224 (4651) :901-903
[5]   Developmental plasticity in neural circuits for a learned behavior [J].
Bottjer, SW ;
Arnold, AP .
ANNUAL REVIEW OF NEUROSCIENCE, 1997, 20 :459-481
[6]  
Brenowitz EA, 1997, J NEUROBIOL, V33, P495, DOI 10.1002/(SICI)1097-4695(19971105)33:5<495::AID-NEU1>3.3.CO
[7]  
2-D
[8]   GLUTAMATE MEDIATES A SLOW SYNAPTIC RESPONSE IN HIPPOCAMPAL SLICE CULTURES [J].
CHARPAK, S ;
GAHWILER, BH .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1991, 243 (1308) :221-226
[9]   POTASSIUM CONDUCTANCES IN HIPPOCAMPAL-NEURONS BLOCKED BY EXCITATORY AMINO-ACID TRANSMITTERS [J].
CHARPAK, S ;
GAHWILER, BH ;
DO, KQ ;
KNOPFEL, T .
NATURE, 1990, 347 (6295) :765-767
[10]  
CLAPHAM DE, 1994, ANNU REV NEUROSCI, V17, P441