Finite one-dimensional impenetrable Bose systems: Occupation numbers

被引:111
作者
Forrester, PJ [1 ]
Frankel, NE
Garoni, TM
Witte, NS
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 04期
关键词
D O I
10.1103/PhysRevA.67.043607
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Bosons in the form of ultracold alkali-metal atoms can be confined to a one-dimensional (1D) domain by the use of harmonic traps. This motivates the study of the ground-state occupations lambda(i) of effective single-particle states phi(i), in the theoretical 1D impenetrable Bose gas. Both the system on a circle and the harmonically trapped system are considered. The lambda(i) and phi(i) are the eigenvalues and eigenfunctions, respectively, of the one-body density matrix. We present a detailed numerical and analytic study of this problem. Our main results are the explicit scaled forms of the density matrices, from which it is deduced that for fixed i the occupations lambda(i) are asymptotically proportional to rootN in both the circular and harmonically trapped cases.
引用
收藏
页数:17
相关论文
共 34 条
[1]  
[Anonymous], LOG GASES RANDOM MAT
[2]  
AYOUB RG, 1981, AM MATH MONTHLY, V74, P1067
[3]   The Calogero-Sutherland model and generalized classical polynomials [J].
Baker, TH ;
Forrester, PJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (01) :175-216
[4]  
Barnes E., 1899, Q. J. Math, V31, P264
[5]   THE FISHER-HARTWIG CONJECTURE AND TOEPLITZ EIGENVALUES [J].
BASOR, EL ;
MORRISON, KE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 202 :129-142
[6]  
Cornell EA, 2002, REV MOD PHYS, V74, P875, DOI [10.1103/RevModPhys.74.875, 10.1142/S0217979202014681]
[7]   Observation of phase fluctuations in elongated Bose-Einstein condensates [J].
Dettmer, S ;
Hellweg, D ;
Ryytty, P ;
Arlt, JJ ;
Ertmer, W ;
Sengstock, K ;
Petrov, DS ;
Shlyapnikov, GV ;
Kreutzmann, H ;
Santos, L ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 2001, 87 (16) :art. no.-160406
[8]  
DUNHAM W, 1999, EULER MASTER US ALL
[9]   Bosons in cigar-shaped traps: Thomas-Fermi Tonks-Girardean regime, and in between [J].
Dunjko, V ;
Lorent, V ;
Olshanii, M .
PHYSICAL REVIEW LETTERS, 2001, 86 (24) :5413-5416
[10]  
FORRESTER PJ, IN PRESS COMMUN MATH