Extended polyglutamine repeats trigger a feedback loop involving the mitochondrial complex III, the proteasome and huntingtin aggregates

被引:43
作者
Fukui, Hirokazu
Moraes, Carlos T.
机构
[1] Univ Miami, Miller Sch Med, Dept Neurol, Miami, FL 33136 USA
[2] Univ Miami, Miller Sch Med, Neurosci Program, Miami, FL 33136 USA
[3] Univ Miami, Miller Sch Med, Dept Cell Biol & Anat, Miami, FL 33136 USA
关键词
D O I
10.1093/hmg/ddm023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondrial abnormalities represent a major cytopathology in Huntington's disease (HD), a fatal neurodegenerative disease caused by CAG repeat expansions in the gene encoding huntingtin (Htt). In the present study, we investigated whether defects in the mitochondrial respiratory function are consequences of the expression of mutant Htt or they promote the formation of Htt aggregates. To take advantage of existing mitochondrial DNA mutants, we developed human osteosarcoma 143B cells expressing mutant Htt in an inducible manner and found that cells expressing mutant Htt but not wild-type Htt exhibited a reduced activity of complex III and an increased activity of complex IV. Conversely, pharmacological treatments that inhibited complex III activity significantly promoted the formation of Htt aggregates. This complex III-mediated modulation of Htt aggregates was also observed in a neuronal progenitor RN33B cell line transduced by lentivirus carrying mutant Htt. This effect of complex III inhibition on the Htt aggregates appeared to be mediated by the inhibition of proteasome activity, but not by ATP depletion or production of reactive oxygen species. Accordingly, complex III mutant cells also showed decreased proteasome activity. These results suggest the presence of a feedback system connecting the mitochondrial respiratory complex III and the production of Htt aggregates. Our results suggest that therapeutic interventions targeting complex III and/or proteasome could ameliorate the progress of HD.
引用
收藏
页码:783 / 797
页数:15
相关论文
共 85 条
[1]   Expanding insights of mitochondrial dysfunction in Parkinson's disease [J].
Abou-Sleiman, PM ;
Muqit, MMK ;
Wood, NW .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (03) :207-219
[2]   Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes [J].
Aon, MA ;
Cortassa, S ;
Marbán, E ;
O'Rourke, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (45) :44735-44744
[3]   Human xenomitochondrial cybrids - Cellular models of mitochondrial complex I deficiency [J].
Barrientos, A ;
Kenyon, L ;
Moraes, CT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (23) :14210-14217
[4]   Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease [J].
Bayona-Bafaluy, MP ;
Blits, B ;
Battersby, BJ ;
Shoubridge, EA ;
Moraes, CT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (40) :14392-14397
[5]   Experimental therapeutics in transgenic mouse models of Huntington's disease [J].
Beal, MF ;
Ferrante, RJ .
NATURE REVIEWS NEUROSCIENCE, 2004, 5 (05) :373-384
[6]  
BEAL MF, 1993, J NEUROSCI, V13, P4181
[7]   Impairment of the ubiquitin-proteasome system by protein aggregation [J].
Bence, NF ;
Sampat, RM ;
Kopito, RR .
SCIENCE, 2001, 292 (5521) :1552-1555
[8]   Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated Huntingtin [J].
Benchoua, A ;
Trioulier, Y ;
Zala, D ;
Gaillard, MC ;
Lefort, N ;
Dufour, N ;
Saudou, F ;
Elalouf, JM ;
Hirsch, E ;
Hantraye, P ;
Déglon, N ;
Brouillet, E .
MOLECULAR BIOLOGY OF THE CELL, 2006, 17 (04) :1652-1663
[9]   Chronic systemic pesticide exposure reproduces features of Parkinson's disease [J].
Betarbet, R ;
Sherer, TB ;
MacKenzie, G ;
Garcia-Osuna, M ;
Panov, AV ;
Greenamyre, JT .
NATURE NEUROSCIENCE, 2000, 3 (12) :1301-1306
[10]   BEHAVIORAL PATHOLOGY INDUCED BY REPEATED SYSTEMIC INJECTIONS OF 3-NITROPROPIONIC ACID MIMICS THE MOTORIC SYMPTOMS OF HUNTINGTONS-DISEASE [J].
BORLONGAN, CV ;
KOUTOUZIS, TK ;
FREEMAN, TB ;
CAHILL, DW ;
SANBERG, PR .
BRAIN RESEARCH, 1995, 697 (1-2) :254-257