Tryptophan fluorescence reveals the conformational state of a dynamic loop in recombinant porcine fructose-1,6-bisphosphatase

被引:25
作者
Nelson, SW [1 ]
Iancu, CV [1 ]
Choe, JY [1 ]
Honzatko, RB [1 ]
Fromm, HJ [1 ]
机构
[1] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA
关键词
D O I
10.1021/bi000609c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Wild-type porcine fructose-1,6-bisphosphatase (FBPase) has no tryptophan residues. Hence, the mutation of Try57 to tryptophan places a unique fluorescent probe in the structural element (loop 52-72) putatively responsible for allosteric regulation of catalysis. On the basis of steady-state kinetics, circular dichroism spectroscopy, and X-ray crystallography, the mutation has little effect on the functional and structural properties of the enzyme. Fluorescence intensity from the Trp57 mutant is maximal in the presence of divalent cations, fructose 6-phosphate and orthophosphate, which together stabilize an R-state conformation in which loop 52-72 is engaged with the active site. The level of fluorescence emission decreases monotonically with increasing levels of AMP, an allosteric inhibitor, which promotes the T-state, disengaged-loop conformation. The titration of various metal-product complexes of the Trp57 mutant with fructose 2,6-bisphosphate (F26P(2)) causes similar decreases in fluorescence, suggesting that F26P(2) and AMP individually induce similar conformational states in FBPase. Fluorescence spectra, however, are sensitive to the type of divalent cation (Zn2+, Mn2+, or Mg2+) and suggest conformations in addition to the R-state, loop-engaged and T-state, loop-disengaged forms of FBPase. The work presented here demonstrates the utility of fluorescence spectroscopy in probing the conformational dynamics of FBPase.
引用
收藏
页码:11100 / 11106
页数:7
相关论文
共 49 条
[1]  
BENKOVIC PA, 1974, J BIOL CHEM, V249, P930
[2]  
BENKOVIC SJ, 1982, ADV ENZYMOL RAMB, V53, P45
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]  
BRUNGER AT, 1992, XPLOR VERSION 3 1
[5]   HIGH-LEVEL EXPRESSION OF PORCINE FRUCTOSE-1,6-BISPHOSPHATASE IN ESCHERICHIA-COLI - PURIFICATION AND CHARACTERIZATION OF THE ENZYME [J].
BURTON, VA ;
CHEN, M ;
ONG, WC ;
LING, TT ;
FROMM, HJ ;
STAYTON, MM .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1993, 192 (02) :511-517
[6]  
Callis PR, 1997, METHOD ENZYMOL, V278, P113
[7]   Toward understanding tryptophan fluorescence in proteins [J].
Chen, Y ;
Barkley, MD .
BIOCHEMISTRY, 1998, 37 (28) :9976-9982
[8]   Crystal structures of fructose 1,6-bisphosphatase: Mechanism of catalysis and allosteric inhibition revealed in product complexes [J].
Choe, JY ;
Fromm, HJ ;
Honzatko, RB .
BIOCHEMISTRY, 2000, 39 (29) :8565-8574
[9]   Role of a dynamic loop in cation activation and allosteric regulation of recombinant porcine, fructose-1,6-bisphosphatase [J].
Choe, JY ;
Poland, BW ;
Fromm, HJ ;
Honzatko, RB .
BIOCHEMISTRY, 1998, 37 (33) :11441-11450
[10]   SITE-DIRECTED MUTAGENESIS OF VIRTUALLY ANY PLASMID BY ELIMINATING A UNIQUE SITE [J].
DENG, WP ;
NICKOLOFF, JA .
ANALYTICAL BIOCHEMISTRY, 1992, 200 (01) :81-88