Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography

被引:55
作者
Gao, F
Poulet, P
Yamada, Y
机构
[1] Univ Strasbourg 1, Fac Med, CNRS,UPRES A 7004, Inst Biol Phys, F-670085 Strasbourg, France
[2] Minist Int Trade & Ind, Dept Mat Sci & Bioengn, Mech Engn Lab, Tsukuba, Ibaraki 3058504, Japan
关键词
D O I
10.1364/AO.39.005898
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A Newton-Raphson inversion algorithm has been extended for simultaneous absorption and scattering reconstruction of fully three-dimensional (3D) diffuse optical tomographic imaging from time-resolved measurements. The proposed algorithm is derived from the efficient computation of the Jacobian matrix of the forward model and uses either the algebraic reconstruction technique or truncated singular-value decomposition as the linear inversion tool. Its validation was examined with numerically simulated data from 3-D finite-element discretization models of tissuelike phantoms, with several combinations of geometric and optical properties, as well as two commonly used source-detector configurations. Our results show that the fully 3-D image reconstruction of an object can be achieved with reasonable quality when volumetric light propagation in tissues is considered, and temporal information from the measurements can be effectively employed. Also, we investigated the conditions under which 3-D issues could be approximately addressed with two-dimensional reconstruction algorithms and further demonstrated that these conditions are seldom predictable or attainable in practice. Thus the application of 3-D algorithms to realistic situations is necessary. (C) 2000 Optical Society of America OCIS codes: 170.6920, 170.3010, 100.3190.
引用
收藏
页码:5898 / 5910
页数:13
相关论文
共 30 条
[1]  
ARRIDGE SR, 1992, P SOC PHOTO-OPT INS, V1767, P372, DOI 10.1117/12.139033
[2]   A FINITE-ELEMENT APPROACH FOR MODELING PHOTON TRANSPORT IN TISSUE [J].
ARRIDGE, SR ;
SCHWEIGER, M ;
HIRAOKA, M ;
DELPY, DT .
MEDICAL PHYSICS, 1993, 20 (02) :299-309
[3]   A gradient-based optimisation scheme for optical tomography [J].
Arridge, SR ;
Schweiger, M .
OPTICS EXPRESS, 1998, 2 (06) :213-226
[4]   Optical imaging in medicine .2. Modelling and reconstruction [J].
Arridge, SR ;
Hebden, JC .
PHYSICS IN MEDICINE AND BIOLOGY, 1997, 42 (05) :841-853
[5]  
BARBOUR RL, 1993, SPIE I SERIES IS, V11, P87
[6]  
BARBOUR RL, 1992, P SOC PHOTO-OPT INS, V1767, P21
[7]   In vivo local determination of tissue optical properties:: applications to human brain [J].
Bevilacqua, F ;
Piguet, D ;
Marquet, P ;
Gross, JD ;
Tromberg, BJ ;
Depeursinge, C .
APPLIED OPTICS, 1999, 38 (22) :4939-4950
[8]  
CHANCE B, 1995, P SPIE, V2389
[9]   Tomographic image reconstruction from optical projections in light-diffusing media [J].
Colak, SB ;
Papaioannou, DG ;
tHooft, GW ;
vanderMark, MB ;
Schomberg, H ;
Paasschens, JCJ ;
Melissen, JBM ;
vanAsten, NAAJ .
APPLIED OPTICS, 1997, 36 (01) :180-213
[10]  
Duderstadt J. J., 1979, Transport theory