Quantum Kolmogorov complexity

被引:3
作者
Berthiaume, A [1 ]
van Dam, W [1 ]
Laplante, S [1 ]
机构
[1] Depaul Univ, Sch CTI, Chicago, IL 60604 USA
来源
15TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS | 2000年
关键词
D O I
10.1109/CCC.2000.856755
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we give a definition for quantum Kolmogorov complexity. In the classical setting, the Kolmogorov complexity of a string is the length of the shortest program that carl produce this string as its output. It is a measure of the amount of innate randomness (or information) contained in the string. We define the quantum Kolmogorov complexity of a qubit string as the length of the shortest quantum input to a universal quantum Turing machine that produces the initial qubit string with high fidelity. The definition of Vitanyi [20] measures the amount of classical information, whereas we consider the amount of quantum information in a qubit string. We argue that our definition is natural and is an accurate representation of the amount of quantum information contained ill a quantum state.
引用
收藏
页码:240 / 249
页数:10
相关论文
共 23 条
[1]   Stabilization of quantum computations by symmetrization [J].
Barenco, A ;
Berthiaume, A ;
Deutsch, D ;
Ekert, A ;
Jozsa, R ;
Macchiavello, C .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1541-1557
[2]   Quantum complexity theory [J].
Bernstein, E ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1411-1473
[3]   ON LENGTH OF PROGRAMS FOR COMPUTING FINITE BINARY SEQUENCES [J].
CHAITIN, GJ .
JOURNAL OF THE ACM, 1966, 13 (04) :547-+
[4]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[5]   QUANTUM-THEORY, THE CHURCH-TURING PRINCIPLE AND THE UNIVERSAL QUANTUM COMPUTER [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 400 (1818) :97-117
[6]   Cryptographic distinguishability measures for quantum-mechanical states [J].
Fuchs, CA ;
van de Graaf, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1216-1227
[7]  
Garey M. S., 1979, COMPUTERS INTRACTIBI
[8]  
Holevo A. S., 1973, PROBL PEREDACHI INF, V9, P177
[9]   Universal quantum information compression [J].
Jozsa, R ;
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICAL REVIEW LETTERS, 1998, 81 (08) :1714-1717
[10]   A NEW PROOF OF THE QUANTUM NOISELESS CODING THEOREM [J].
JOZSA, R ;
SCHUMACHER, B .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2343-2349