Coincidence of cleavage sites of intron endonuclease I-TevI and critical sequences of the host thymidylate synthase gene

被引:33
作者
Edgell, DR [1 ]
Stanger, MJ [1 ]
Belfort, M [1 ]
机构
[1] New York State Dept Hlth, Wadsworth Ctr, Mol Genet Program, Albany, NY 12201 USA
关键词
homing endonuclease; I-TevI; thymidylate synthase; protein-DNA interaction;
D O I
10.1016/j.jmb.2004.09.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To maximize spread of their host intron or intein, many homing endonucleases recognize nucleotides that code for important and conserved amino acid residues of the target gene. Here, we examine the cleavage requirements for I-TevI, which binds a stretch of thymidylate synthase (TS) DNA that codes for functionally critical residues in the TS active site. Using an in vitro selection scheme, we identified two base-pairs in the I-TevI cleavage site region as important for cleavage efficiency. These were confirmed by comparison of I-TevI cleavage efficiencies on mutant and on wild-type substrates. We also showed that nicking of the bottom strand by I-TevI is not affected by mutation of residues surrounding the bottom-strand cleavage site, unlike other homing endonucleases. One of these two base-pairs is universally conserved in all TS sequences, and is identical with a previously identified cleavage determinant of I-BmoI, a related GIY-YIG endonuclease that binds a homologous stretch of TS-encoding DNA. The other base-pair is conserved only in a subset of TS genes that includes the I-TevI, but not the I-BmoI, target sequence. Both the I-TevI and I-BmoI cleavage site requirements correspond to functionally critical residues involved in an extensive hydrogen bond network within the TS active site. Remarkably, these cleavage requirements correlate with TS phylogeny in bacteria, suggesting that each endonuclease has individually adapted to efficiently cleave distinct TS substrates. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1231 / 1241
页数:11
相关论文
共 39 条
[1]   I-PpoI and I-CreI homing site sequence degeneracy determined by random mutagenesis and sequential in vitro enrichment [J].
Argast, GM ;
Stephens, KM ;
Emond, MJ ;
Monnat, RJ .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (03) :345-353
[2]  
Belfort Marlene, 2002, P761
[3]   I-TEVI, THE ENDONUCLEASE ENCODED BY THE MOBILE TD INTRON, RECOGNIZES BINDING AND CLEAVAGE DOMAINS ON ITS DNA TARGET [J].
BELLPEDERSEN, D ;
QUIRK, SM ;
BRYK, M ;
BELFORT, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (17) :7719-7723
[4]   SELECTION OF A REMOTE CLEAVAGE SITE BY I-TEVI, THE TD INTRON-ENCODED ENDONUCLEASE [J].
BRYK, M ;
BELISLE, M ;
MUELLER, JE ;
BELFORT, M .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 247 (02) :197-210
[5]   THE TD INTRON ENDONUCLEASE I-TEVI MAKES EXTENSIVE SEQUENCE-TOLERANT CONTACTS ACROSS THE MINOR GROOVE OF ITS DNA TARGET [J].
BRYK, M ;
QUIRK, SM ;
MUELLER, JE ;
LOIZOS, N ;
LAWRENCE, C ;
BELFORT, M .
EMBO JOURNAL, 1993, 12 (05) :2141-2149
[6]   THE CATALYTIC MECHANISM AND STRUCTURE OF THYMIDYLATE SYNTHASE [J].
CARRERAS, CW ;
SANTI, DV .
ANNUAL REVIEW OF BIOCHEMISTRY, 1995, 64 :721-762
[7]   Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI [J].
Chevalier, B ;
Turmel, M ;
Lemieux, C ;
Monnat, RJ ;
Stoddard, BL .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 329 (02) :253-269
[8]   Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility [J].
Chevalier, BS ;
Stoddard, BL .
NUCLEIC ACIDS RESEARCH, 2001, 29 (18) :3757-3774
[9]   INTERVENING SEQUENCE IN THE THYMIDYLATE SYNTHASE GENE OF BACTERIOPHAGE-T4 [J].
CHU, FK ;
MALEY, GF ;
MALEY, F ;
BELFORT, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (10) :3049-3053
[10]   Statistical modeling, phylogenetic analysis and structure prediction of a protein splicing domain common to inteins and hedgehog proteins [J].
Dalgaard, JZ ;
Moser, MJ ;
Hughey, R ;
Mian, IS .
JOURNAL OF COMPUTATIONAL BIOLOGY, 1997, 4 (02) :193-214