Surface-enhanced Raman scattering on single-wall carbon nanotubes

被引:39
作者
Kneipp, K
Kneipp, H
Dresselhaus, MS
Lefrant, S
机构
[1] Harvard Univ, Sch Med, Wellman Ctr Photomed, Boston, MA 02144 USA
[2] MIT, Cambridge, MA 02139 USA
[3] Tech Univ Berlin, Inst Opt, D-10623 Berlin, Germany
[4] Inst Mat Jean Rouxel, F-44322 Nantes 03, France
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2004年 / 362卷 / 1824期
关键词
surface-enhanced Raman scattering; carbon nanotubes; gold nanostructures; silver nanostructures; local optical fields; Stokes and anti-Stokes Raman scattering;
D O I
10.1098/rsta.2004.1445
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Exploiting the effect of surface-enhanced Raman scattering (SERS), the Raman signal of single-wall carbon nanotubes (SWNTs) can be enhanced by up to 14 orders of magnitude when the tubes are in contact with silver or gold nanostructures and Raman scattering takes place predominantly in the enhanced local optical fields of the nanostructures. Such a level of enhancement offers exciting opportunities for ultra-sensitive Raman studies on SWNTs and allows resonant and non-resonant Raman experiments to be done on single SWNTs at relatively high signal levels. Since the optical fields are highly localized within so-called 'hot spots' on fractal silver colloidal clusters. lateral confinement of the Raman scattering can be as small as 5 nm, allowing spectroscopic selection of a single nanotube from a larger population. Moreover, since SWNTs are very stable 'artificial molecules' with a high aspect ratio and a strong electron-phonon coupling, they are unique 'test molecules' for investigating the SERS effect itself and for probing the 'electromagnetic field contribution' and 'charge transfer contribution' to the effect. SERS is also a powerful tool for monitoring the 'chemical' interaction between the nanotube and the metal nanostructure.
引用
收藏
页码:2361 / 2373
页数:13
相关论文
共 38 条
[1]   ANOMALOUSLY INTENSE RAMAN-SPECTRA OF PYRIDINE AT A SILVER ELECTRODE [J].
ALBRECHT, MG ;
CREIGHTON, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :5215-5217
[2]   Electric field gradient effects in Raman spectroscopy [J].
Ayars, EJ ;
Hallen, HD ;
Jahncke, CL .
PHYSICAL REVIEW LETTERS, 2000, 85 (19) :4180-4183
[3]   Confocal observation of individual classes of single wall nanotubes by surface-enhanced Raman spectroscopy [J].
Azoulay, J ;
Débarre, A ;
Richard, A ;
Tchénio, P .
JOURNAL DE PHYSIQUE IV, 2000, 10 (P8) :223-226
[4]   SERS studies on disordered carbon nanotube thin films [J].
Baibarac, M ;
Benoit, JM ;
Lefrant, S ;
Baltog, I ;
Schreiber, J ;
Bernier, P ;
Chauvet, O .
SYNTHETIC METALS, 2001, 121 (1-3) :1199-1200
[5]  
Baibarac M, 2000, J POLYM SCI POL PHYS, V38, P2599, DOI 10.1002/1099-0488(20001001)38:19<2599::AID-POLB120>3.0.CO
[6]  
2-Y
[7]   Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes -: art. no. 155414 [J].
Brown, SDM ;
Jorio, A ;
Corio, P ;
Dresselhaus, MS ;
Dresselhaus, G ;
Saito, R ;
Kneipp, K .
PHYSICAL REVIEW B, 2001, 63 (15)
[8]   Surface-enhanced Raman scattering [J].
Campion, A ;
Kambhampati, P .
CHEMICAL SOCIETY REVIEWS, 1998, 27 (04) :241-250
[9]   Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces [J].
Corio, P ;
Brown, SDM ;
Marucci, A ;
Pimenta, MA ;
Kneipp, K ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 2000, 61 (19) :13202-13211
[10]   BUCKYTUBES AND DERIVATIVES - THEIR GROWTH AND IMPLICATIONS FOR BUCKYBALL FORMATION [J].
DRAVID, VP ;
LIN, X ;
WANG, Y ;
WANG, XK ;
YEE, A ;
KETTERSON, JB ;
CHANG, RPH .
SCIENCE, 1993, 259 (5101) :1601-1604