Evaluation of the rotation matrices in the basis of real spherical harmonics

被引:129
作者
Blanco, MA [1 ]
Florez, M
Bermejo, M
机构
[1] Univ Oviedo, Fac Quim, Dept Quim Fis & Analit, E-33006 Oviedo, Spain
[2] Univ Oviedo, Fac Ciencias, Dept Fis, Oviedo 33007, Spain
来源
THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE | 1997年 / 419卷
关键词
Wigner D functions; real spherical harmonics; electronic structure calculations; rotation matrices;
D O I
10.1016/S0166-1280(97)00185-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rotation matrices (or Wigner D functions) are the matrix representations of the rotation operators in the basis of spherical harmonics. They are the key entities in the generation of symmetry-adapted functions by means of projection operators. Although their expression in terms of ordinary (complex) spherical harmonics and Euler rotation angles is well known, an alternative representation using real spherical harmonics is desirable. The aim of this contribution is to obtain a general algorithm to compute the representation matrix of any point-group symmetry operation in the basis of the real spherical harmonics, paying attention to the use of recurrence relationships that allow the treatment of functions with high angular momenta. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:19 / 27
页数:9
相关论文
共 8 条
[1]  
ARFKEN G, 1985, MATH METHODS PHYSICI
[2]  
Chisholm C., 1976, Group theoretical techniques in quantum chemistry
[3]  
Clementi E., 1974, Atomic Data and Nuclear Data Tables, V14, P177, DOI 10.1016/S0092-640X(74)80016-1
[4]  
Homeier HHH, 1996, J MOL STRUC-THEOCHEM, V368, P31, DOI 10.1016/S0166-1280(96)90531-X
[5]   Rotation matrices for real spherical harmonics. Direct determination by recursion [J].
Ivanic, J ;
Ruedenberg, K .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (15) :6342-6347
[6]  
MCWEENY R, 1963, INT ENCY PHYSICAL CH, V3
[7]  
Press W. H., 1986, NUMERICAL RECIPES
[8]  
Varshalovich D., 1988, QUANTUM THEORY ANGUL