Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance.: Characterization of a novel heavy metal transporting ATPase

被引:222
作者
Papoyan, A [1 ]
Kochian, LV [1 ]
机构
[1] Cornell Univ, US Plant Soil & Nutr Lab, USDA ARS, Ithaca, NY 14853 USA
关键词
D O I
10.1104/pp.104.044503
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Thlaspi caerulescens is a heavy metal hyperaccumulator plant species that is able to accumulate extremely high levels of zinc (Zn) and cadmium (Cd) in its shoots (30,000 mug g(-1) Zn and 10,000 mug g(-1) Cd), and has been the subject of intense research as a model plant to gain a better understanding of the mechanisms of heavy metal hyperaccumulation and tolerance and as a source of genes for developing plant species better suited for the phytoremediation of metal-contaminated soils. In this study, we report on the results of a yeast (Saccharomyces cerevisae) complementation screen aimed at identifying candidate heavy metal tolerance genes in T caerulescens. A number of Thlaspi genes that conferred Cd tolerance to yeast were identified, including possible metal-binding ligands from the metallothionein gene family, and a P-type ATPase that is a member of the P-1B subfamily of purported heavy metal-translocating ATPases. A detailed characterization of the Thlaspi heavy metal ATPase, TcHMA4, demonstrated that it mediates yeast metal tolerance via active efflux of a number of different heavy metals (Cd, Zn, lead [Pb], and copper [Cu]) out of the cell. However, in T. caerulescens, based on differences in tissue-specific and metal-responsive expression of this transporter compared with its homolog in Arabidopsis (Arabidopsis thaliana), we suggest that it may not be involved in metal tolerance. Instead, we hypothesize that it may play a role in xylem loading of metals and thus could be a key player in the hyperaccumulation phenotype expressed in T caerulescens. Additionally, evidence is presented showing that the C terminus of the TcHMA4 protein, which contains numerous possible heavy metal-binding His and Cys repeats residues, participates in heavy metal binding. When partial peptides from this C-terminal domain were expressed in yeast, they conferred an extremely high level of Cd tolerance and Cd hyperaccumulation. The possibilities for enhancing the metal tolerance and phytoremediation potential of higher plants via expression of these metal-binding peptides are also discussed.
引用
收藏
页码:3814 / 3823
页数:10
相关论文
共 23 条
[1]   Inventory of the superfamily of P-type ion pumps in Arabidopsis [J].
Axelsen, KB ;
Palmgren, MG .
PLANT PHYSIOLOGY, 2001, 126 (02) :696-706
[2]   Evolution of substrate specificities in the P-type ATPase superfamily [J].
Axelsen, KB ;
Palmgren, MG .
JOURNAL OF MOLECULAR EVOLUTION, 1998, 46 (01) :84-101
[3]   DETECTION OF NICKELIFEROUS ROCKS BY ANALYSIS OF HERBARIUM SPECIMENS OF INDICATOR PLANTS [J].
BROOKS, RR ;
LEE, J ;
REEVES, RD ;
JAFFRE, T .
JOURNAL OF GEOCHEMICAL EXPLORATION, 1977, 7 (01) :49-57
[4]   ZINC AND CADMIUM UPTAKE BY HYPERACCUMULATOR THLASPI-CAERULESCENS GROWN IN NUTRIENT SOLUTION [J].
BROWN, SL ;
CHANEY, RL ;
ANGLE, JS ;
BAKER, AJM .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1995, 59 (01) :125-133
[5]   Molecular mechanisms of plant metal tolerance and homeostasis [J].
Clemens, S .
PLANTA, 2001, 212 (04) :475-486
[6]   Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis [J].
Cobbett, C ;
Goldsbrough, P .
ANNUAL REVIEW OF PLANT BIOLOGY, 2002, 53 :159-182
[7]   P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis [J].
Hussain, D ;
Haydon, MJ ;
Wang, Y ;
Wong, E ;
Sherson, SM ;
Young, J ;
Camakaris, J ;
Harper, JF ;
Cobbett, CS .
PLANT CELL, 2004, 16 (05) :1327-1339
[8]   Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens [J].
Küpper, H ;
Zhao, FJ ;
McGrath, SP .
PLANT PHYSIOLOGY, 1999, 119 (01) :305-311
[9]   Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens [J].
Lasat, MM ;
Baker, AJM ;
Kochian, LV .
PLANT PHYSIOLOGY, 1998, 118 (03) :875-883
[10]   Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi [J].
Lasat, MM ;
Baker, AJM ;
Kochian, LV .
PLANT PHYSIOLOGY, 1996, 112 (04) :1715-1722