Dendritic voltage-gated K+ conductance gradient in pyramidal neurones of neocortical layer 5B from rats

被引:32
作者
Schaefer, Andreas T.
Helmstaedter, Moritz
Schmitt, Arno C.
Bar-Yehuda, Dan
Almog, Mara
Ben-Porat, Hana
Sakmann, Bert
Korngreen, Alon [1 ]
机构
[1] Bar Ilan Univ, Mina & Everard Goodman Fac Life Sci, IL-52900 Ramat Gan, Israel
[2] Bar Ilan Univ, Leslie & Susan Gonda Interdisciplinary Brain Res, IL-52900 Ramat Gan, Israel
[3] Max Planck Inst Med Res, Zellphysiol Abt, D-69120 Heidelberg, Germany
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2007年 / 579卷 / 03期
关键词
D O I
10.1113/jphysiol.2006.122564
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Voltage-gated potassium channels effectively regulate dendritic excitability in neurones. It has been suggested that in the distal apical dendrite of layer 5B (L5B) neocortical pyramidal neurones, K+ conductances participate in active dendritic synaptic integration and control regenerative dendritic potentials. The ionic mechanism for triggering these regenerative potentials has yet to be elucidated. Here we used two-electrode voltage clamp (TEVC) to quantitatively record K+ conductance densities of a sustained K+ conductance in the soma and apical dendrite of L5B neurones of adult rats. We report that the somatic and proximal dendritic sustained voltage-gated K+ conductance density is more than 10-fold larger than previous estimates. The results obtained using TEVC were corroborated using current-clamp experiments in combination with compartmental modelling. Possible error sources, including inaccurate measurement of the passive membrane parameters and unknown axonal and basal dendritic conductance distributions, were shown not to distort the density estimation considerably. The sustained voltage-gated K+ conductance density was found to decrease steeply along the apical dendrite. The steep negative K+ conductance density gradient along the apical dendrite may help to define a distal, low-threshold region for amplification of distal synaptic input in L5B pyramidal neurones.
引用
收藏
页码:737 / 752
页数:16
相关论文
共 37 条
[1]   REGENERATIVE ACTIVITY IN APICAL DENDRITES OF PYRAMIDAL CELLS IN NEOCORTEX [J].
AMITAI, Y ;
FRIEDMAN, A ;
CONNORS, BW ;
GUTNICK, MJ .
CEREBRAL CORTEX, 1993, 3 (01) :26-38
[2]   Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons [J].
Antic, SD .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 550 (01) :35-50
[3]   Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat [J].
Bekkers, JM .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 525 (03) :611-620
[4]   Properties of voltage-gated potassium currents in nucleated patches from large layer 5 cortical pyramidal neurons of the rat [J].
Bekkers, JM .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 525 (03) :593-609
[5]   Action potential propagation into the presynaptic dendrites of rat mitral cells [J].
Bischofberger, J ;
Jonas, P .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 504 (02) :359-365
[6]   CABLE PROPERTIES OF CAT SPINAL MOTONEURONES MEASURED BY COMBINING VOLTAGE CLAMP, CURRENT CLAMP AND INTRACELLULAR STAINING [J].
CLEMENTS, JD ;
REDMAN, SJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 409 :63-87
[7]   Ion channel properties underlying axonal action potential initiation in pyramidal neurons [J].
Colbert, CM ;
Pan, EH .
NATURE NEUROSCIENCE, 2002, 5 (06) :533-538
[8]   Membrane potential of the squid giant axon during current flow [J].
Cole, KS ;
Curtis, HJ .
JOURNAL OF GENERAL PHYSIOLOGY, 1941, 24 (04) :551-563
[9]   SODIUM AND CALCIUM CHANNELS IN BOVINE CHROMAFFIN CELLS [J].
FENWICK, EM ;
MARTY, A ;
NEHER, E .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 331 (OCT) :599-635
[10]  
FINKEL AS, 1985, VOLTAGE PATCH CLAMPI