Microtissue elasticity: Measurements by atomic force microscopy and its influence on cell differentiation

被引:148
作者
Engler, Adam J. [1 ]
Rehfeldt, Florian [1 ]
Sen, Shamik [1 ]
Discher, Dennis E. [1 ]
机构
[1] Univ Penn, Sch Engn & Appl Sci, Biophys Engn & Appl Sci, Philadelphia, PA 19104 USA
来源
CELL MECHANICS | 2007年 / 83卷
关键词
D O I
10.1016/S0091-679X(07)83022-6
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
It is increasingly appreciated that the mechanical properties of the microenvironment around cells exerts a significant influence on cell behavior, but careful consideration of what is the physiologically relevant elasticity for specific cell types is required to produce results that meaningfully recapitulate in vivo development. Here we outline methodologies for excising and characterizing the effective microelasticity of tissues; but first we describe and validate an atomic force microscopy (AFM) method as applied to two comparatively simple hydrogel systems. With tissues and gels sufficiently understood, the latter can be appropriately tuned to mimic the desired tissue microenvironment for a given cell type. The approach is briefly illustrated with lineage commitment of stem cells due to matrix elasticity.
引用
收藏
页码:521 / +
页数:26
相关论文
共 58 条
[1]  
Alenghat Francis J, 2002, Sci STKE, V2002, ppe6, DOI 10.1126/stke.2002.119.pe6
[2]   Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function [J].
Barton-Davis, ER ;
Shoturma, DI ;
Musaro, A ;
Rosenthal, N ;
Sweeney, HL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15603-15607
[3]   Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell-substratum adhesions [J].
Beningo, KA ;
Lo, CM ;
Wang, YL .
METHODS IN CELL-MATRIX ADHESION, 2002, 69 :325-339
[4]   Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize [J].
Bershadsky, Alexander ;
Kozlov, Michael ;
Geiger, Benjamin .
CURRENT OPINION IN CELL BIOLOGY, 2006, 18 (05) :472-481
[5]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[6]   Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor [J].
Cai, SS ;
Liu, YC ;
Shu, XZ ;
Prestwich, GD .
BIOMATERIALS, 2005, 26 (30) :6054-6067
[7]   Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation [J].
Collinsworth, AM ;
Zhang, S ;
Kraus, WE ;
Truskey, GA .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2002, 283 (04) :C1219-C1227
[8]   Stresses at the cell-to-substrate interface during locomotion of fibroblasts [J].
Dembo, M ;
Wang, YL .
BIOPHYSICAL JOURNAL, 1999, 76 (04) :2307-2316
[9]   Determination of elastic moduli of thin layers of soft material using the atomic force microscope [J].
Dimitriadis, EK ;
Horkay, F ;
Maresca, J ;
Kachar, B ;
Chadwick, RS .
BIOPHYSICAL JOURNAL, 2002, 82 (05) :2798-2810
[10]   In vivo model of the mechanical properties of the human skin under suction [J].
Diridollou, S ;
Patat, F ;
Gens, F ;
Vaillant, L ;
Black, D ;
Lagarde, JM ;
Gall, Y ;
Berson, M .
SKIN RESEARCH AND TECHNOLOGY, 2000, 6 (04) :214-221