Estimating the secrecy-rate of Physical Unclonable Functions with the context-tree weighting method

被引:42
作者
Ignatenko, Tanya [1 ]
Schrijen, Geert-Jan [2 ]
Skoric, Boris [2 ]
Tuyls, Pim [2 ]
Willems, Frans [1 ]
机构
[1] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[2] Philips Res Labs, Eindhoven, Netherlands
来源
2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS | 2006年
关键词
D O I
10.1109/ISIT.2006.261765
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We propose methods to estimate the secrecy-rate of fuzzy sources (e.g. biometrics and Physical Unclonable Functions (PUFs)) using context-tree weighting (CTW, Willems et al. [1995]). In this paper we focus on PUFs. In order to show that our estimates are realistic we first generalize Maurer's [1993] result to the ergodic case. Then we focus on the fact that the entropy of a stationary two-dimensional structure is a limit of a series of conditional entropies, a result by Anastassiou and Sakrison (1982). We extend this result to the conditional entropy of one two-dimensional structure given another one. Finally we show that the general CTW-method approaches the source entropy also in the two-dimensional stationary case. We further extend this result to the two-dimensional conditional entropy. Based on the obtained results we do several measurements on (our) optical PUFs. These measurements allow us to conclude that a secrecy-rate of 0.3 bit/location is possible.
引用
收藏
页码:499 / +
页数:2
相关论文
共 15 条
[1]   COMMON RANDOMNESS IN INFORMATION-THEORY AND CRYPTOGRAPHY .1. SECRET SHARING [J].
AHLSWEDE, R ;
CSISZAR, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (04) :1121-1132
[2]   SOME RESULTS REGARDING THE ENTROPY RATE OF RANDOM-FIELDS [J].
ANASTASSIOU, D ;
SAKRISON, DJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (02) :340-343
[3]   PROOF OF DATA COMPRESSION THEOREM OF SLEPIAN AND WOLF FOR ERGODIC SOURCES [J].
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (02) :226-228
[4]   Secrecy capacities for multiple terminals [J].
Csiszár, I ;
Narayan, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (12) :3047-3061
[5]  
Gallager R. G., 1968, INFORM THEORY RELIAB
[6]  
MAURER UM, 1993, IEEE T INFORM THEORY, V39, P733, DOI 10.1109/18.256484
[7]  
Pappu R. S., 2001, PhD thesis
[8]  
Skoric B, 2005, LECT NOTES COMPUT SC, V3531, P407
[9]   NOISELESS CODING OF CORRELATED INFORMATION SOURCES [J].
SLEPIAN, D ;
WOLF, JK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (04) :471-480
[10]  
Tuyls P, 2005, LECT NOTES COMPUT SC, V3570, P141