Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component Analysis

被引:133
作者
Arnol, Damien [1 ]
Schapiro, Denis [4 ,5 ,6 ]
Bodenmiller, Bernd [4 ]
Saez-Rodriguez, Julio [1 ,2 ,7 ]
Stegle, Oliver [1 ,3 ,8 ]
机构
[1] European Mol Biol Lab, European Bioinformat Inst, Wellcome Genome Campus, Cambridge CB10 1SD, England
[2] Rhein Westfal TH Aachen, Fac Med, Joint Res Ctr Computat Biomed, Pauwelsstr 19, D-52074 Aachen, Germany
[3] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
[4] Univ Zurich, Inst Mol Life Sci, Zurich, Switzerland
[5] Swiss Fed Inst Technol, Life Sci Zurich Grad Sch, Zurich, Switzerland
[6] Univ Zurich, Zurich, Switzerland
[7] Heidelberg Univ, Fac Med, Inst Computat Biomed, Bioquant, D-69120 Heidelberg, Germany
[8] German Canc Res Ctr, Div Computat Genom & Syst Genet, D-69120 Heidelberg, Germany
来源
CELL REPORTS | 2019年 / 29卷 / 01期
基金
欧洲研究理事会;
关键词
GENE-EXPRESSION; NEUROTRANSMITTER TRANSPORTERS; SUBCELLULAR RESOLUTION; BREAST-CANCER; TISSUE; RNA; PHAGOCYTOSIS; DISCOVERY; RECEPTOR; CAMKII;
D O I
10.1016/j.celrep.2019.08.077
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Technological advances enable assaying multiplexed spatially resolvedRNAand protein expression profiling of individual cells, thereby capturing molecular variations in physiological contexts. While these methods are increasingly accessible, computational approaches for studying the interplay of the spatial structure of tissues and cell-cell heterogeneity are only beginning to emerge. Here, we present spatial variance component analysis (SVCA), a computational framework for the analysis of spatial molecular data. SVCA enables quantifying different dimensions of spatial variation and in particular quantifies the effect of cell-cell interactions on gene expression. In a breast cancer Imaging Mass Cytometry dataset, our model yields interpretable spatial variance signatures, which reveal cell-cell interactions as a major driver of protein expression heterogeneity. Applied to high-dimensional imaging-derived RNA data, SVCA identifies plausible gene families that are linked to cell-cell interactions. SVCA is available as a free software tool that can be widely applied to spatial data from different technologies.
引用
收藏
页码:202 / +
页数:16
相关论文
共 77 条
[1]   High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin [J].
Achim, Kaia ;
Pettit, Jean-Baptiste ;
Saraiva, Luis R. ;
Gavriouchkina, Daria ;
Larsson, Tomas ;
Arendt, Detlev ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2015, 33 (05) :503-U215
[2]   MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice [J].
Aichler, Michaela ;
Walch, Axel .
LABORATORY INVESTIGATION, 2015, 95 (04) :422-431
[3]   Multiplexed ion beam imaging of human breast tumors [J].
Angelo, Michael ;
Bendall, Sean C. ;
Finck, Rachel ;
Hale, Matthew B. ;
Hitzman, Chuck ;
Borowsky, Alexander D. ;
Levenson, Richard M. ;
Lowe, John B. ;
Liu, Scot D. ;
Zhao, Shuchun ;
Natkunam, Yasodha ;
Nolan, Garry P. .
NATURE MEDICINE, 2014, 20 (04) :436-+
[4]   Glutamate released from glial cells synchronizes neuronal activity in the hippocampus [J].
Angulo, MC ;
Kozlov, AS ;
Charpak, S ;
Audinat, E .
JOURNAL OF NEUROSCIENCE, 2004, 24 (31) :6920-6927
[5]  
ANSCOMBE FJ, 1948, BIOMETRIKA, V35, P246, DOI 10.1093/biomet/35.3-4.246
[6]  
Ayuob N. N., 2012, CELL INTERACTION
[7]   LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan [J].
Banerji, S ;
Ni, J ;
Wang, SX ;
Clasper, S ;
Su, J ;
Tammi, R ;
Jones, M ;
Jackson, DG .
JOURNAL OF CELL BIOLOGY, 1999, 144 (04) :789-801
[8]   Control of Transcript Variability in Single Mammalian Cells [J].
Battich, Nico ;
Stoeger, Thomas ;
Pelkmans, Lucas .
CELL, 2015, 163 (07) :1596-1610
[9]   Image-based transcriptomics in thousands of single human cells at single-molecule resolution [J].
Battich, Nico ;
Stoeger, Thomas ;
Pelkmans, Lucas .
NATURE METHODS, 2013, 10 (11) :1127-1133
[10]   Genetic Variation in the Social Environment Contributes to Health and Disease [J].
Baud, Amelie ;
Mulligan, Megan K. ;
Casale, Francesco Paolo ;
Ingels, Jesse F. ;
Bohl, Casey J. ;
Callebert, Jacques ;
Launay, Jean-Marie ;
Krohn, Jon ;
Legarra, Andres ;
Williams, Robert W. ;
Stegle, Oliver .
PLOS GENETICS, 2017, 13 (01)