In vivo control of respiration by cytochrome C oxidase in human cells

被引:112
作者
Villani, G
Attardi, G [1 ]
机构
[1] CALTECH, Div Biol, Pasadena, CA 91125 USA
[2] Univ Bari, Dept Biochem & Mol Biol, Bari, Italy
关键词
cytochrome c oxidase; respiratory chain; flux control; mitochondrial diseases; free radicals;
D O I
10.1016/S0891-5849(00)00303-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The metabolic control of oxidative phosphorylation (OXPHOS) has attracted increasing attention in recent years, especially due to its importance for understanding the role of mitochondrial DNA mutations in human diseases and aging. Experiments on isolated mitochondria have indicated that a relatively small fraction of each of several components of the electron transport chain is sufficient to sustain a normal respiration rate. These experiments, however, may have not reflected the in vivo situation, due to the possible loss of essential metabolites during organelle isolation and the disruption of the normal interactions of mitochondria with the cytoskeleton, which may be important for the channeling of respiratory substrate to the organelles. To obtain direct evidence on this question, in particular, as concerns the in vivo control of respiration by cytochrome c oxidase (COX), we have developed an approach for measuring COX activity in intact cells, by means of cyanide titration, either as an isolated step or as a respiratory chain-integrated step. The method has been applied to a variety of human cell types, including wild-type and mtDNA mutation-carrying cells, several tumor-derived semidifferentiated cell lines, as well as specialized cells removed from the organism. The results obtained strongly support the following conclusions: (i) the in vivo control of respiration by COX is much tighter than has been generally assumed on the basis of experiments carried out on isolated mitochondria; (ii) COX thresholds depend on the respiratory fluxes under which they are measured: and (iii) measurements of relative enzyme capacities are needed for understanding the role of mitochondrial respiratory complexes in human physiopathology. (C) 2000 Elsevier Science Inc.
引用
收藏
页码:202 / 210
页数:9
相关论文
共 58 条
[1]   ISOFORMS OF YEAST CYTOCHROME-C-OXIDASE SUBUNIT-V AFFECT THE BINUCLEAR REACTION-CENTER AND AFTER THE KINETICS OF INTERACTION WITH THE ISOFORMS OF YEAST CYTOCHROME-C [J].
ALLEN, LA ;
ZHAO, XJ ;
CAUGHEY, W ;
POYTON, RO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (01) :110-118
[2]   Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome-c oxidase [J].
Arnold, S ;
Kadenbach, B .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 249 (01) :350-354
[3]   ATP-regulation of cytochrome oxidase in yeast mitochondria -: Role of subunit VIa [J].
Beauvoit, B ;
Bunoust, O ;
Guérin, B ;
Rigoulet, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 263 (01) :118-127
[4]   Mitochondria and cell death - Mechanistic aspects and methodological issues [J].
Bernardi, P ;
Scorrano, L ;
Colonna, R ;
Petronilli, V ;
Di Lisa, F .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 264 (03) :687-701
[5]   The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death [J].
Bernardi, P .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1996, 1275 (1-2) :5-9
[6]  
BERRY MN, 1992, CURR TOP CELL REGUL, V33, P309
[7]  
BOULET L, 1992, AM J HUM GENET, V51, P1187
[8]   Nitric oxide and mitochondrial respiration [J].
Brown, GC .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1999, 1411 (2-3) :351-369
[9]   A stop-codon mutation in the human mtDNA cytochrome c oxidase I gene disrupts the functional structure of complex IV [J].
Bruno, C ;
Martinuzzi, A ;
Tang, YY ;
Andreu, AL ;
Pallotti, F ;
Bonilla, E ;
Shanske, S ;
Fu, J ;
Sue, CM ;
Angelini, C ;
DiMauro, S ;
Manfredi, G .
AMERICAN JOURNAL OF HUMAN GENETICS, 1999, 65 (03) :611-620
[10]  
Burke PV, 1998, J EXP BIOL, V201, P1163