CpG islands in human X-inactivation

被引:30
作者
Ke, X [1 ]
Collins, A [1 ]
机构
[1] Univ Southampton, Southampton SO16 6YD, Hants, England
关键词
D O I
10.1046/j.1469-1809.2003.00038.x
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Sequence comparison analyses have been carried out for 19 genes escaping X-inactivation versus 73 genes subject to X-inactivation, and 100 randomly chosen X chromosome genes versus 100 randomly chosen autosomal genes. The coding sequence of the genes and their upstream and downstream flanking sequences were investigated using a series of windows (1 kb, 2 kb, 5 kb, 10 kb and 100 kb). No significant difference in number of LINE-L1 elements was observed in genes escaping X-inactivation compared to genes subject to X-inactivation. This result, therefore, does not support the suggestion that lack of LINE repeat elements is a key factor for genes escaping X-in activation. However, significantly reduced numbers of CpG islands and SINE MIR elements were found to be associated with genes escaping X-inactivation. Compared to genes known to be inactivated, genes escaping X-inactivation were observed to have fewer CpG islands, particularly within the 2 kb upstream flanking sequence close to the coding region. The results suggest that CpG islands may play a role in the process of X-inactivation by providing sufficient DNA methylation targets for the maintenance of X-inactivation. Lack of CpG islands may be a major reason for genes escaping X-inactivation regulation.
引用
收藏
页码:242 / 249
页数:8
相关论文
共 21 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: The Lyon repeat hypothesis [J].
Bailey, JA ;
Carrel, L ;
Chakravarti, A ;
Eichler, EE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6634-6639
[3]   GAMETIC IMPRINTING IN MAMMALS [J].
BARLOW, DP .
SCIENCE, 1995, 270 (5242) :1610-1613
[4]   A MORPHOLOGICAL DISTINCTION BETWEEN NEURONES OF THE MALE AND FEMALE, AND THE BEHAVIOUR OF THE NUCLEOLAR SATELLITE DURING ACCELERATED NUCLEOPROTEIN SYNTHESIS [J].
BARR, ML ;
BERTRAM, EG .
NATURE, 1949, 163 (4148) :676-677
[5]   CPG-RICH ISLANDS AND THE FUNCTION OF DNA METHYLATION [J].
BIRD, AP .
NATURE, 1986, 321 (6067) :209-213
[6]   DIFFERENTIAL DISTRIBUTION OF LONG AND SHORT INTERSPERSED ELEMENT SEQUENCES IN THE MOUSE GENOME - CHROMOSOME KARYOTYPING BY FLUORESCENCE INSITU HYBRIDIZATION [J].
BOYLE, AL ;
BALLARD, SG ;
WARD, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (19) :7757-7761
[7]   A first-generation X-inactivation profile of the human X chromosome [J].
Carrel, L ;
Cottle, AA ;
Goglin, KC ;
Willard, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (25) :14440-14444
[8]   ESCAPE FROM X-INACTIVATION IN HUMAN AND MOUSE [J].
DISTECHE, CM .
TRENDS IN GENETICS, 1995, 11 (01) :17-22
[9]   CPG ISLANDS IN VERTEBRATE GENOMES [J].
GARDINERGARDEN, M ;
FROMMER, M .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 196 (02) :261-282
[10]   Regulation of X-chromosome inactivation in development in mice and humans [J].
Goto, T ;
Monk, M .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (02) :362-+