Dynamic SU(2) lattice gauge theory at finite temperature

被引:20
作者
Okano, K [1 ]
Schulke, L
Zheng, B
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[2] Univ Gesamthsch Siegen, D-57068 Siegen, Germany
来源
PHYSICAL REVIEW D | 1998年 / 57卷 / 03期
关键词
D O I
10.1103/PhysRevD.57.1411
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The dynamic relaxation process for the (2 + 1)-dimensional SU(2) lattice gauge theory at critical temperature is investigated with Monte Carlo methods. The critical initial increase of the Polyakov loop is observed. The dynamic exponents theta and z as well as the static critical exponent beta/upsilon are determined from the power law behavior of the Polyakov loop, the autocorrelation, and the second moment at the early stage of the time evolution. The universal short-time scaling behavior of the dynamic system is confirmed. The values of the exponents show that the dynamic SU(2) lattice gauge theory is in the same dynamic universality class as the dynamic Ising model.
引用
收藏
页码:1411 / 1414
页数:4
相关论文
共 17 条
[1]   CRITICAL-BEHAVIOR AT THE DECONFINEMENT PHASE-TRANSITION OF SU(2) LATTICE GAUGE-THEORY IN (2 + 1) DIMENSIONS [J].
CHRISTENSEN, J ;
DAMGAARD, PH .
NUCLEAR PHYSICS B, 1991, 348 (01) :226-256
[2]   Universal short-time dynamics in the Kosterlitz-Thouless phase [J].
Czerner, P ;
Ritschel, U .
PHYSICAL REVIEW E, 1996, 53 (04) :3333-3341
[3]   DAMAGE SPREADING AND CRITICAL EXPONENTS FOR MODEL-A ISING DYNAMICS [J].
GRASSBERGER, P .
PHYSICA A, 1995, 214 (04) :547-559
[4]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[5]   NONEQUILIBRIUM DYNAMICS OF THE ISING-MODEL FOR T-LESS-THAN-OR-EQUAL-TO-TC [J].
HUMAYUN, K ;
BRAY, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (08) :1915-1930
[6]   REMANENT MAGNETIZATION DECAY AT THE SPIN-GLASS CRITICAL-POINT - A NEW DYNAMIC CRITICAL EXPONENT FOR NONEQUILIBRIUM AUTOCORRELATIONS [J].
HUSE, DA .
PHYSICAL REVIEW B, 1989, 40 (01) :304-308
[7]   NEW UNIVERSAL SHORT-TIME SCALING BEHAVIOR OF CRITICAL RELAXATION PROCESSES [J].
JANSSEN, HK ;
SCHAUB, B ;
SCHMITTMANN, B .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 73 (04) :539-549
[8]  
JANSSEN HK, 1992, TOPICS MODERN STAT P
[9]   MONTE-CARLO SIMULATION OF UNIVERSAL SHORT-TIME BEHAVIOR IN CRITICAL RELAXATION [J].
LI, ZB ;
RITSCHEL, U ;
ZHENG, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (21) :L837-L842
[10]   Global persistence exponent for nonequilibrium critical dynamics [J].
Majumdar, SN ;
Bray, AJ ;
Cornell, SJ ;
Sire, C .
PHYSICAL REVIEW LETTERS, 1996, 77 (18) :3704-3707