Epidermal stem cells: interactions in developmental environments

被引:29
作者
Bickenbach, JR [1 ]
Grinnell, KL [1 ]
机构
[1] Univ Iowa, Coll Med, Dept Anat & Cell Biol, Iowa City, IA 52242 USA
关键词
somatic stem cells; blastocyst; epidermis;
D O I
10.1111/j.1432-0436.2004.07208003.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Homeostasis of continuously renewing adult tissues, such as the epidermis of the skin, is maintained by epidermal stem cells (EpiSC), which are a small population of undifferentiated, self-renewing basal keratinocyte cells that produce daughter transit amplifying (TA) cells to make up the majority of the proliferative basal cell population in the epidermis. We have isolated EpiSC from neonatal and adult skin, and shown that these cells can regenerate an epidermis that lasts long term in vitro and in vivo, and that permanently expresses a recombinant gene in the regenerated tissue (Bickenbach and Dunnwald, 2000; Dunnwald et al., 2001). When we injected murine EpiSC into the developing blastocyst environment of the mouse, we found that both neonatal and adult EpiSC retained some ability to participate in the formation of tissues from all three germ layers (Liang and Bickenbach, 2002; Bickenbach and Chinnathambi, 2004; Liang et al., 2004). Although it appears evident that EpiSC act as pluripotent stem cells, how this reprogramming takes place is not understood. EpiSC might directly transdifferentiate into other cell types or they might first dedifferentiate into a more primitive cell type, and then proceed to develop along a cell lineage pathway. To begin to unravel this, we co-cultured EpiSC with embryonic stem (ES) cells, and found that EpiSC could alter their cell lineage protein expression to that of a more primitive cell type. We also placed EpiSC in a wounded environment and found that EpiSC interacted with the mesenchymal cells repopulating the wound bed. Our findings indicate that the population of cells that we isolate as EpiSC has a pluripotent capability. This has led us to postulate a paradigm shift for somatic stem cells. We propose that tissues maintain a sequestered population of uncommitted stem cells that retain a regenerative response which is enhanced when the cells are exposed to developmental or stress influences.
引用
收藏
页码:371 / 380
页数:10
相关论文
共 74 条
[1]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[2]   CELL-SIZE AS A DETERMINANT OF THE CLONE-FORMING ABILITY OF HUMAN KERATINOCYTES [J].
BARRANDON, Y ;
GREEN, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (16) :5390-5394
[3]  
Bickenbach J R, 2000, Adv Dermatol, V16, P159
[4]   IDENTIFICATION AND BEHAVIOR OF LABEL-RETAINING CELLS IN ORAL-MUCOSA AND SKIN [J].
BICKENBACH, JR .
JOURNAL OF DENTAL RESEARCH, 1981, 60 :1611-1620
[5]  
BICKENBACH JR, 2004, IN PRESS PROGR STEM
[6]  
BICKENBACH JR, 1998, BIOENGINEERING SKIN, P75
[7]   Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo [J].
Bjornson, CRR ;
Rietze, RL ;
Reynolds, BA ;
Magli, MC ;
Vescovi, AL .
SCIENCE, 1999, 283 (5401) :534-537
[8]   From marrow to brain: Expression of neuronal phenotypes in adult mice [J].
Brazelton, TR ;
Rossi, FMV ;
Keshet, GI ;
Blau, HM .
SCIENCE, 2000, 290 (5497) :1775-1779
[9]  
BRODSKY VY, 1991, VIRCHOWS ARCH B, V61, P289
[10]   Epithelial stem cells in the skin: definition, markers, localization and functions [J].
Cotsarelis, G ;
Kaur, P ;
Dhouailly, D ;
Hengge, U ;
Bickenbach, J .
EXPERIMENTAL DERMATOLOGY, 1999, 8 (01) :80-88