Generalization properties of finite-size polynomial support vector machines

被引:10
作者
Risau-Gusman, S [1 ]
Gordon, MB [1 ]
机构
[1] CEA Grenoble, SPSMS, DRFMC, F-38054 Grenoble 09, France
关键词
D O I
10.1103/PhysRevE.62.7092
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The learning properties of finite-size polynomial support vector machines are analyzed in the case of realizable classification tasks. The normalization of the high-order features acts as a squeezing factor, introducing a strong anisotropy in the patterns distribution in feature space. As a function of the training set size, the corresponding generalization error presents a crossover, more or less abrupt depending on the distribution's anisotropy and on the task; to be learned, between a fast-decreasing and a slowly decreasing regime. This behavior corresponds to the stepwise decrease found by Dietrich ct al. [Phys. Rev. Lett. 82, 2975 (1999)] in the thermodynamic limit. The theoretical results are in excellent agreement with the numerical simulations.
引用
收藏
页码:7092 / 7099
页数:8
相关论文
共 15 条
  • [1] BUHOT A, CONDMAT9802179
  • [2] BUHOT A, 1999, EUR S ART NEUR NETW
  • [3] CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
  • [4] GEOMETRICAL AND STATISTICAL PROPERTIES OF SYSTEMS OF LINEAR INEQUALITIES WITH APPLICATIONS IN PATTERN RECOGNITION
    COVER, TM
    [J]. IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (03): : 326 - &
  • [5] Statistical mechanics of support vector networks
    Dietrich, R
    Opper, M
    Sompolinsky, H
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (14) : 2975 - 2978
  • [6] LEARNING WITH A TEMPERATURE-DEPENDENT ALGORITHM
    GORDON, MB
    GREMPEL, DR
    [J]. EUROPHYSICS LETTERS, 1995, 29 (03): : 257 - 262
  • [7] SUPERVISED LEARNING FROM CLUSTERED INPUT EXAMPLES
    MARANGI, C
    BIEHL, M
    SOLLA, SA
    [J]. EUROPHYSICS LETTERS, 1995, 30 (02): : 117 - 122
  • [8] MONASSON R, 1993, J PHYS A, V25, P3701
  • [9] ON THE ABILITY OF THE OPTIMAL PERCEPTRON TO GENERALIZE
    OPPER, M
    KINZEL, W
    KLEINZ, J
    NEHL, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (11): : L581 - L586
  • [10] LEARNING TIMES OF NEURAL NETWORKS - EXACT SOLUTION FOR A PERCEPTRON ALGORITHM
    OPPER, M
    [J]. PHYSICAL REVIEW A, 1988, 38 (07) : 3824 - 3826