Rayleigh wave dispersion due to spatial (FEM) discretization of a thin elastic solid having non-curved boundary

被引:14
作者
Brepta, R [1 ]
Vales, F [1 ]
Cerv, J [1 ]
Tikal, B [1 ]
机构
[1] INST THERMOMECH, CR-18200 PRAGUE 8, CZECH REPUBLIC
关键词
D O I
10.1016/0045-7949(95)00218-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The grid dispersion for a harmonic Rayleigh wave propagating along a straight boundary of a thin elastic solid, modelled by finite elements, is investigated. It is shown that with an increase of dimensionless wavenumber gamma . q, a phase velocity of Rayleigh waves increases from the long wave limit c(R). For sufficiently short waves it follows the dispersion curve referring to quasitransverse waves in an unbounded discretized medium.
引用
收藏
页码:1233 / 1244
页数:12
相关论文
共 13 条
[1]  
Achenbach J.D., 1975, WAVE PROPAGATION ELA
[2]   RAYLEIGH-WAVE SCATTERING FROM SURFACE-FEATURES - WEDGES AND DOWN-STEPS [J].
BLAKE, RJ ;
BOND, LJ .
ULTRASONICS, 1990, 28 (04) :214-228
[3]   COMPUTER-MODEL OF THE INTERACTION OF ACOUSTIC SURFACE-WAVES WITH DISCONTINUITIES [J].
BOND, LJ .
ULTRASONICS, 1979, 17 (02) :71-77
[4]  
BREPTA R, 1986, Z99886 I THERM RES R
[5]  
BREPTA R, 1982, MODIFICATION FINITE
[6]  
BREPTA R, 1992, ACTA TECHNICA CSAV, V37, P459
[7]  
CERV J, 1993, 10TH P DAN ADR S EXP, P17
[8]  
CERV J, 1988, ACTA TECHNICA CSAV, V89, P89
[9]  
Graff K. F., 1975, WAVE MOTION ELASTIC
[10]   DISPERSION ANALYSIS OF FINITE-ELEMENT SEMI-DISCRETIZATIONS OF THE TWO-DIMENSIONAL WAVE-EQUATION [J].
MULLEN, R ;
BELYTSCHKO, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1982, 18 (01) :11-29