Magnetic movement of biological fluid droplets

被引:49
作者
Garcia, Antonio A. [1 ]
Egatz-Gomez, Ana
Lindsay, Solitaire A.
Dominguez-Garcia, P.
Melle, Sonia
Marquez, Manuel
Rubio, Miguel A.
Picraux, S. T.
Yang, Dongqing
Aella, P.
Hayes, Mark A.
Gust, Devens
Loyprasert, Suchera
Vazquez-Alvarez, Terannie
Wang, Joseph
机构
[1] Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA
[2] Univ Complutense Madrid, Dept Opt, Madrid 28037, Spain
[3] Univ Nacl Educ Distancia, Dept Fis Fundamental, Madrid 28040, Spain
[4] Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA
[5] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
[6] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA
[7] Philip Morris Inc, Res Ctr, Richmond, VA 23234 USA
[8] Los Alamos Natl Lab, MST CINT, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
drop; microfluidics; paramagnetic particle; superhydrophobic surface; carbonyl iron microparticle; nanowire; albumin; serum;
D O I
10.1016/j.jmmm.2006.10.1149
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic fields can be used to control the movement of aqueous drops on non-patterned, silicon nanowire superhydrophobic surfaces. Drops of aqueous and biological fluids are controlled by introducing magnetizable carbonyl iron microparticles into the liquid. Key elements of operations such as movement, coalescence, and splitting of water and biological fluid drops, as well as electrochemical measurement of an analyte are demonstrated. Superhydrophobic surfaces were prepared using vapor-liquid-solid (VLS) growth systems followed by coating with a perfluorinated hydrocarbon molecule. Drops were made from aqueous and biological fluid suspensions with magnetizable microparticle concentrations ranging from 0.1 to 10 wt%. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:238 / 243
页数:6
相关论文
共 24 条
  • [1] Vapor-liquid-solid growth of germanium nanostructures on silicon
    Dailey, JW
    Taraci, J
    Clement, T
    Smith, DJ
    Drucker, J
    Picraux, ST
    [J]. JOURNAL OF APPLIED PHYSICS, 2004, 96 (12) : 7556 - 7567
  • [2] Vibration-actuated drop motion on surfaces for batch microfluidic processes
    Daniel, S
    Chaudhury, MK
    de Gennes, PG
    [J]. LANGMUIR, 2005, 21 (09) : 4240 - 4248
  • [3] DOMINGUES F, 1995, PHYS REV LETT, V75, P2972
  • [4] FAIR R, 2004, DIGITAL MICROFLUIDIC
  • [5] STUDIES AT PHASE INTERFACES .1. SLIDING OF LIQUID DROPS ON SOLID SURFACES AND A THEORY FOR SPRAY RETENTION
    FURMIDGE, CG
    [J]. JOURNAL OF COLLOID SCIENCE, 1962, 17 (04): : 309 - &
  • [6] GINDER JM, Patent No. 5549837
  • [7] Gould P, 2003, MATER TODAY, P44, DOI DOI 10.1016/S1369-7021(03)01131-3
  • [8] Sliding, slipping and rolling: the sedimentation of a viscous drop down a gently inclined plane
    Hodges, SR
    Jensen, OE
    Rallison, JM
    [J]. JOURNAL OF FLUID MECHANICS, 2004, 512 : 95 - 131
  • [9] Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pressure
    Journet, C
    Moulinet, S
    Ybert, C
    Purcell, ST
    Bocquet, L
    [J]. EUROPHYSICS LETTERS, 2005, 71 (01): : 104 - 109
  • [10] Optical microfluidics
    Kotz, KT
    Noble, KA
    Faris, GW
    [J]. APPLIED PHYSICS LETTERS, 2004, 85 (13) : 2658 - 2660