Calcium enhances heparin catalysis of the antithrombin-factor Xa reaction by promoting the assembly of an intermediate heparin-antithrombin-factor Xa bridging complex. Demonstration by rapid kinetics studies

被引:54
作者
Rezaie, AR [1 ]
Olson, ST
机构
[1] St Louis Univ, Sch Med, Edward A Doisy Dept Biochem & Mol Biol, St Louis, MO 63104 USA
[2] Univ Illinois, Coll Dent, Ctr Mol Biol Oral Dis, Chicago, IL 60612 USA
关键词
D O I
10.1021/bi0011126
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heparin catalyzes the inhibition of factor Xa by antithrombin mainly through an allosteric activation of the serpin inhibitor, but an alternative heparin bridging mechanism has been suggested to enhance the catalysis in the presence of physiologic calcium levels due to calcium interactions with the Gla domain exposing a heparin binding exosite in factor Xa. To provide direct evidence for this bridging mechanism, we studied the heparin-catalyzed reaction of antithrombin with factor Xa, Gla-domainless factor Xa (GDFXa), and a heparin binding exosite mutant of GDFXa in the absence and presence of calcium using rapid kinetic methods. The pseudo-first-order rate constant for factor Xa inhibition by antithrombin complexed with a long-chain similar to 70-saccharide heparin showed a saturable dependence on inhibitor concentration in the presence but not in the absence of 2.5 mM Ca2+, indicating the formation of an intermediate heparin-serpin-proteinase encounter complex with a dissociation constant of similar to 90 nM prior to formation of the stable serpin-proteinase complex with a rate constant of similar to 20 s(-1). Similar saturation kinetics were observed for the inhibition of GDFXa by the antithrombin-heparin complex, except that Ca2+ was not required for the effect. By contrast, no Ca2+-dependent saturation of the inhibition rate constant was detectable over the same range of inhibitor concentrations for reactions of either a short-chain similar to 26-saccharide high-affinity heparin-antithrombin complex with factor Xa or the long-chain heparin-antithrombin complex with the heparin binding exosite mutant, GDFXa R240A. These findings suggest that binding of full-length heparin chains to an exosite of factor Xa in the presence of Ca2+ produces a chain-length-dependent lowering of the dissociation constant for assembly of the intermediate heparin-antithrombin-factor Xa encounter complex, resulting in a several 100-fold rate enhancement by a heparin bridging mechanism.
引用
收藏
页码:12083 / 12090
页数:8
相关论文
共 45 条
[1]  
Björk I, 1997, ADV EXP MED BIOL, V425, P17
[2]  
BJORK I, 1982, J BIOL CHEM, V257, P9487
[3]   ISOLATION OF HUMAN-BLOOD COAGULATION ALPHA-FACTOR-XA BY SOYBEAN TRYPSIN-INHIBITOR SEPHAROSE CHROMATOGRAPHY AND ITS ACTIVE-SITE TITRATION WITH FLUORESCEIN MONO-P-GUANIDINOBENZOATE [J].
BOCK, PE ;
CRAIG, PA ;
OLSON, ST ;
SINGH, P .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1989, 273 (02) :375-388
[4]   THE REFINED 1.9 A CRYSTAL-STRUCTURE OF HUMAN ALPHA-THROMBIN - INTERACTION WITH D-PHE-PRO-ARG CHLOROMETHYLKETONE AND SIGNIFICANCE OF THE TYR-PRO-PRO-TRP INSERTION SEGMENT [J].
BODE, W ;
MAYR, I ;
BAUMANN, U ;
HUBER, R ;
STONE, SR ;
HOFSTEENGE, J .
EMBO JOURNAL, 1989, 8 (11) :3467-3475
[5]   STRUCTURE-ACTIVITY RELATIONSHIP IN HEPARIN - A SYNTHETIC PENTASACCHARIDE WITH HIGH-AFFINITY FOR ANTI-THROMBIN-III AND ELICITING HIGH ANTI-FACTOR-XA ACTIVITY [J].
CHOAY, J ;
PETITOU, M ;
LORMEAU, JC ;
SINAY, P ;
CASU, B ;
GATTI, G .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1983, 116 (02) :492-499
[6]   Importance of the P2 glycine of antithrombin in target proteinase specificity, heparin activation, and the efficiency of proteinase trapping as revealed by a P2 Gly → Pro mutation [J].
Chuang, YJ ;
Gettins, PGW ;
Olson, ST .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (40) :28142-28149
[7]  
CRAIG PA, 1989, J BIOL CHEM, V264, P5452
[8]   ANTICOAGULANT ACTION OF HEPARIN [J].
DAMUS, PS ;
HICKS, M ;
ROSENBERG, RD .
NATURE, 1973, 246 (5432) :355-357
[9]  
DANIELSSON A, 1981, BIOCHEM J, V193, P427
[10]  
DANIELSSON A, 1986, J BIOL CHEM, V261, P5467