Ab initio QM/MM modeling of the hydroxylation step in p-hydroxybenzoate hydroxylase

被引:65
作者
Ridder, L
Harvey, JN
Rietjens, IMCM
Vervoort, J
Mulholland, AJ
机构
[1] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
[2] Univ Wageningen & Res Ctr, Div Toxicol, NL-6703 HE Wageningen, Netherlands
[3] Univ Wageningen & Res Ctr, Biochem Lab, NL-6703 HE Wageningen, Netherlands
关键词
D O I
10.1021/jp026213n
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
p-Hydroxybenzoate hydroxylase (PHBH) is the model enzyme for the microbial flavin-dependent mono-oxygenases. The aromatic hydroxylation of p-hydroxybenzoate by the reactive C4a-hydroperoxyflavin cofactor intermediate in PHBH has been studied by a combined ab initio quantum mechanics and molecular mechanics (QM/MM) method. Starting from a model of the C4a-hydroperoxyflavin intermediate in the PHBH reaction cycle, built on the basis of the crystal structure of the enzyme-substrate complex, a pathway for the hydroxylation step was calculated by imposing a reaction coordinate involving cleavage of the peroxide oxygen-oxygen bond and bond formation between the C3 atom of the substrate and the distal oxygen of the peroxide moiety of the cofactor. A QM/MM potential was used in which the QM region (49 atoms) was treated at the ab initio HF level with the 3-21G(d) or 6-31G(d) basis sets. The accuracy of various aspects of the QM/MM method for this system has been tested by comparison to higher-level calculations. Inclusion of electron correlation, applied here as B3LYP/6-311+G(d,p) and LMP2/6-31+G(d) single point energy corrections to the ab initio QM/MM structures, is shown to be essential to obtain barriers in agreement with the experimental rate constant. The calculated pathways support electrophilic aromatic substitution as the mechanism of this rate-limiting step in the PHBH catalyzed reaction cycle. The polarization of the QM region by the enzyme has been investigated. A potentially important catalytic interaction between the reacting OH group in the transition state (formally OH+) and the backbone carbonyl of the Pro293 residue is identified from the calculations and is analyzed in detail. This interaction is calculated to lower the barrier by a catalytically significant 2-3 kcal/mol, corresponding to a 100-fold rate enhancement.
引用
收藏
页码:2118 / 2126
页数:9
相关论文
共 47 条
[1]  
ANDERSON RF, 1987, J BIOL CHEM, V262, P17475
[2]  
ANDERSON RF, 1991, J BIOL CHEM, V266, P13086
[3]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[4]   POLAR HYDROGEN POSITIONS IN PROTEINS - EMPIRICAL ENERGY PLACEMENT AND NEUTRON-DIFFRACTION COMPARISON [J].
BRUNGER, AT ;
KARPLUS, M .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1988, 4 (02) :148-156
[5]   GAUSSIAN-2 THEORY FOR MOLECULAR-ENERGIES OF 1ST-ROW AND 2ND-ROW COMPOUNDS [J].
CURTISS, LA ;
RAGHAVACHARI, K ;
TRUCKS, GW ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (11) :7221-7230
[6]   GROUND-STATES OF MOLECULES .38. MNDO METHOD - APPROXIMATIONS AND PARAMETERS [J].
DEWAR, MJS ;
THIEL, W .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :4899-4907
[7]   THE DEVELOPMENT AND USE OF QUANTUM-MECHANICAL MOLECULAR-MODELS .76. AM1 - A NEW GENERAL-PURPOSE QUANTUM-MECHANICAL MOLECULAR-MODEL [J].
DEWAR, MJS ;
ZOEBISCH, EG ;
HEALY, EF ;
STEWART, JJP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (13) :3902-3909
[8]   EVOLUTIONARY DIVERGENCE OF POBA, THE STRUCTURAL GENE ENCODING P-HYDROXYBENZOATE HYDROXYLASE IN AN ACINETOBACTER-CALCOACETICUS STRAIN WELL-SUITED FOR GENETIC-ANALYSIS [J].
DIMARCO, AA ;
AVERHOFF, BA ;
KIM, EE ;
ORNSTON, LN .
GENE, 1993, 125 (01) :25-33
[9]  
ENTSCH B, 1991, J BIOL CHEM, V266, P17341
[10]  
ENTSCH B, 1976, J BIOL CHEM, V251, P2550