Numerical evaluation of singular multivariate normal distributions

被引:40
作者
Genz, A
Kwong, KS
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 119260, Singapore
[2] Washington State Univ, Dept Math, Pullman, WA 99164 USA
关键词
multivariate normal; singular distribution; numerical integration; statistical computation;
D O I
10.1080/00949650008812053
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an efficient and accurate method to evaluate multivariate normal probabilities with arbitrary singular correlation matrices. The new method is applied to the construction of simultaneous confidence intervals and simultaneous all pairwise confidence intervals for multinomial proportions when the sample size is sufficiently large.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 28 条
[1]  
ANGELINI P, 1974, Progress in Cardiovascular Diseases, V16, P469, DOI 10.1016/0033-0620(74)90007-3
[3]  
Cochran WG., 1963, Sampling techniques, V2nd ed., DOI [10.1002/bimj.19650070312, DOI 10.1002/BIMJ.19650070312]
[4]   RANDOMIZATION OF NUMBER THEORETIC METHODS FOR MULTIPLE INTEGRATION [J].
CRANLEY, R ;
PATTERSON, TNL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (06) :904-914
[5]   COMPUTATION OF THE MULTIVARIATE NORMAL INTEGRAL [J].
DREZNER, Z .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1992, 18 (04) :470-480
[6]   APPROXIMATIONS TO THE PROBABILITY INTEGRAL AND CERTAIN PERCENTAGE POINTS OF A MULTIVARIATE ANALOGUE OF STUDENTS T-DISTRIBUTION [J].
DUNNETT, CW ;
SOBEL, M .
BIOMETRIKA, 1955, 42 (1-2) :258-260
[7]   ALGORITHM AS-251 - MULTIVARIATE NORMAL PROBABILITY INTEGRALS WITH PRODUCT CORRELATION STRUCTURE [J].
DUNNETT, CW .
APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1989, 38 (03) :564-579
[8]   QUICK SIMULTANEOUS CONFIDENCE-INTERVALS FOR MULTINOMIAL PROPORTIONS [J].
FITZPATRICK, S ;
SCOTT, A .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (399) :875-878
[9]  
Genz A., 1992, J COMPUT GRAPH STAT, V1, P141
[10]  
GOLD RZ, 1963, ANN MATH STAT, V30, P56