Transfer operator approach on three-dimensional quantum billiards with SO(2) symmetry

被引:6
作者
Chang, CH [1 ]
机构
[1] Natl Ctr Theoret Sci, Div Phys, Hsinchu 300, Taiwan
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 04期
关键词
D O I
10.1103/PhysRevE.67.046201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This work demonstrates the application of Bogomolny's transfer operator method on three-dimensional dynamics. Motivated by experimental observations of lenslike metal clusters, the quantum billiards bounded by a flat bottom and an upper surface with SO(2) symmetry are studied. A precise determination of the energies with error less than 0.05% and exact predicted degeneracies in the special case of the half-sphere billiard confirm the efficiency of this method. Furthermore, the spectra and degeneracies of lens billiards with varying heights are explicitly determined.
引用
收藏
页数:7
相关论文
共 16 条
[1]  
Bimberg D., 1999, QUANTUM DOT HETEROST
[2]   QUANTUM MAPS FROM TRANSFER OPERATORS [J].
BOGOMOLNY, EB ;
CARIOLI, M .
PHYSICA D, 1993, 67 (1-3) :88-112
[3]   SEMICLASSICAL QUANTIZATION OF MULTIDIMENSIONAL SYSTEMS [J].
BOGOMOLNY, EB .
NONLINEARITY, 1992, 5 (04) :805-866
[4]  
BRACK M, 1997, SEMICLASSICAL PHYSIC
[5]   Quantization conditions in Bogomolny's transfer operator method [J].
Chang, CH .
PHYSICAL REVIEW E, 2002, 66 (05) :6-056202
[6]   Bogomolny's semiclassical transfer operator for rotationally invariant integrable systems [J].
Goodings, DA ;
Whelan, ND .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (37) :7521-7540
[7]   SEMICLASSICAL QUANTIZATION USING BOGOMOLNYS QUANTUM SURFACE OF SECTION [J].
HAGGERTY, MR .
PHYSICAL REVIEW E, 1995, 52 (01) :389-408
[8]  
HASEGAWA H, 1989, PROG THEOR PHYS SUPP, P198, DOI 10.1143/PTPS.98.198
[9]   Numerical accuracy of Bogomolny's semiclassical quantization scheme in quantum billiards [J].
Hu, B ;
Li, BW ;
Rouben, DC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (29) :5419-5433
[10]   Semiclassical Poincare map for integrable systems [J].
Lauritzen, Bent .
CHAOS, 1992, 2 (03) :409-412