Multiple approaches to estimating air-water gas exchange in small lakes

被引:180
作者
Cole, Jonathan J. [1 ]
Bade, Darren L. [2 ]
Bastviken, David [3 ]
Pace, Michael L. [4 ]
Van de Bogert, Matthew [5 ]
机构
[1] Cary Inst Ecosyst Studies, Millbrook, NY 12581 USA
[2] Kent State Univ, Kent, OH 44242 USA
[3] Linkoping Univ, Dept Themat Studies Water & Environm Studies, Linkoping, Sweden
[4] Univ Virginia, Charlottesville, VA 22901 USA
[5] Univ Wisconsin, Ctr Limnol, Madison, WI 53706 USA
来源
LIMNOLOGY AND OCEANOGRAPHY-METHODS | 2010年 / 8卷
基金
美国国家科学基金会;
关键词
TERRESTRIAL ORGANIC-CARBON; AQUATIC FOOD WEBS; TRANSFER VELOCITIES; DISSOLVED-OXYGEN; FLOODPLAIN LAKE; C-13; ADDITION; WIND-SPEED; CO2; METABOLISM; SUPPORT;
D O I
10.4319/lom.2010.8.285
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rate of gas exchange between air and water is an essential quantity in a number of contexts, from mass balances to the calculation of whole-system metabolism. The exchange of a gas between water and the atmosphere is controlled by differential partial pressures of gases in air and in water (both straightforward to measure) and by the amount of turbulent energy exchange between the air-water interface, the measurement of which is neither simple nor direct. This physical exchange is often expressed as a piston velocity (k). We compared four methods for estimating k in a series of small (0.3 to 45 ha), low-wind (mean wind < 3 m s(-1)) lakes: 1) floating chambers using ambient CH(4); 2) whole-lake SF(6) additions; 3) three wind-based models from the literature; and 4) C mass balances constrained by whole-lake (13)C additions. All of the methods, with the exception of one wind-based model, converged on values for k(600) of between 0.35 and 0.74 m d(-1) with no biases among methods. The floating chambers, if designed properly, are a cost-effective way of obtaining site-specific values of k for low wind lakes over fairly short time frames (hours).
引用
收藏
页码:285 / 293
页数:9
相关论文
共 49 条
[1]   Impact of chemically enhanced diffusion on dissolved inorganic carbon stable isotopes in a fertilized lake [J].
Bade, DL ;
Cole, JJ .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2006, 111 (C1)
[2]   Degradation of dissolved organic matter in oxic and anoxic lake water [J].
Bastviken, D ;
Persson, L ;
Odham, G ;
Tranvik, L .
LIMNOLOGY AND OCEANOGRAPHY, 2004, 49 (01) :109-116
[3]   Fates of methane from different lake habitats:: Connecting whole-lake budgets and CH4 emissions [J].
Bastviken, David ;
Cole, Jonathan J. ;
Pace, Michael L. ;
Van de Bogert, Matthew C. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2008, 113 (G2)
[4]   Supersaturation and evasion of CO2 and CH4 in surface waters at Mer Bleue peatland, Canada [J].
Billett, M. F. ;
Moore, T. R. .
HYDROLOGICAL PROCESSES, 2008, 22 (12) :2044-2054
[5]   Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames) [J].
Borges, AV ;
Delille, B ;
Schiettecatte, LS ;
Gazeau, F ;
Abril, G ;
Frankignoulle, M .
LIMNOLOGY AND OCEANOGRAPHY, 2004, 49 (05) :1630-1641
[6]   Ecosystem subsidies:: Terrestrial support of aquatic food webs from 13C addition to contrasting lakes [J].
Carpenter, SR ;
Cole, JJ ;
Pace, ML ;
Van de Bogert, M ;
Bade, DL ;
Bastviken, D ;
Gille, CM ;
Hodgson, JR ;
Kitchell, JF ;
Kritzberg, ES .
ECOLOGY, 2005, 86 (10) :2737-2750
[7]   DISSOLVED-OXYGEN IN LOWER HUDSON ESTUARY - 1978-93 [J].
CLARK, JF ;
SIMPSON, HJ ;
BOPP, RF ;
DECK, BL .
JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE, 1995, 121 (10) :760-763
[8]  
CLARK JF, 1994, TELLUS B, V46, P264
[9]   Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget [J].
Cole, J. J. ;
Prairie, Y. T. ;
Caraco, N. F. ;
McDowell, W. H. ;
Tranvik, L. J. ;
Striegl, R. G. ;
Duarte, C. M. ;
Kortelainen, P. ;
Downing, J. A. ;
Middelburg, J. J. ;
Melack, J. .
ECOSYSTEMS, 2007, 10 (01) :171-184
[10]   Hydrologic variability of small, Northern Michigan lakes measured by the addition of tracers [J].
Cole, JJ ;
Pace, ML .
ECOSYSTEMS, 1998, 1 (03) :310-320