Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase

被引:176
作者
Mukhopadhyay, R [1 ]
Shi, J [1 ]
Rosen, BP [1 ]
机构
[1] Wayne State Univ, Sch Med, Dept Biochem & Mol Biol, Detroit, MI 48201 USA
关键词
D O I
10.1074/jbc.M910401199
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Saccharomyces cerevisiae, expression of the ACR2 and ACR3 genes confers arsenical resistance. Acr2p is the first identified eukaryotic arsenate reductase. It reduces arsenate to arsenite, which is then extruded from cells by Acr3p. In this study, we demonstrate that ACR2 complemented the arsenate-sensitive phenotype of an arsC deletion in Escherichia coli. ACR2 was cloned into a bacterial expression vector and expressed in E. coli as a C-terminally histidine-tagged protein that was purified by sequential metal chelate affinity and gel filtration chromatography. Acr2p purified as a homodimer of 34 kDa. The purified protein was shown to catalyze the reduction of arsenate to arsenite. Enzymatic activity as a function of arsenate concentration exhibited an apparent positive cooperativity with an apparent Hill coefficient of 2.7. Activity required GSH and glutaredoxin as the source of reducing equivalents. Thioredoxin was unable to support arsenate reduction. However, glutaredoxins from both S. cerevisiae and E. coli were able to serve as reductants. Analysis of grx mutants lacking one or both cysteine residues in the Cys-Pro-Tyr-Cys active site demonstrated that only the N-terminal cysteine residue is essential for arsenate reductase activity. This suggests that during the catalytic cycle, Acr2p forms a mixed disulfide with GSH before being reduced by glutaredoxin to regenerate the active Acr2p reductase.
引用
收藏
页码:21149 / 21157
页数:9
相关论文
共 35 条
  • [1] Arsenic: Health effects, mechanisms of actions, and research issues
    Abernathy, CO
    Liu, YP
    Longfellow, D
    Aposhian, HV
    Beck, B
    Fowler, B
    Goyer, R
    Menzer, R
    Rossman, T
    Thompson, C
    Waalkes, M
    [J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 1999, 107 (07) : 593 - 597
  • [2] [Anonymous], 1998, METHODS YEAST GENETI
  • [3] 2 ADDITIONAL GLUTAREDOXINS EXIST IN ESCHERICHIA-COLI - GLUTAREDOXIN-3 IS A HYDROGEN DONOR FOR RIBONUCLEOTIDE REDUCTASE IN A THIOREDOXIN GLUTAREDOXIN-1 DOUBLE MUTANT
    ASLUND, F
    EHN, B
    MIRANDAVIZUETE, A
    PUEYO, C
    HOLMGREN, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (21) : 9813 - 9817
  • [4] Bachmann B.J., 1987, ESCHERICHIA COLI SAL, P1190
  • [5] Bhattacharjee H, 1999, SYMP SOC GEN MICROBI, V58, P58
  • [6] Bobrowicz P, 1997, YEAST, V13, P819, DOI 10.1002/(SICI)1097-0061(199707)13:9<819::AID-YEA142>3.0.CO
  • [7] 2-Y
  • [8] ION-TRANSPORT IN YEAST
    BORSTPAUWELS, GWFH
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1981, 650 (2-3) : 88 - 127
  • [9] BOWMAN S, 1991, J BIOL CHEM, V266, P7517
  • [10] STRUCTURAL AND FUNCTIONAL-CHARACTERIZATION OF THE MUTANT ESCHERICHIA-COLI GLUTAREDOXIN(C14-]S) AND ITS MIXED DISULFIDE WITH GLUTATHIONE
    BUSHWELLER, JH
    ASLUND, F
    WUTHRICH, K
    HOLMGREN, A
    [J]. BIOCHEMISTRY, 1992, 31 (38) : 9288 - 9293