Genomic basis for cell-wall diversity in plants.: A comparative approach to gene families in rice and Arabidopsis

被引:134
作者
Yokoyama, R [1 ]
Nishitani, K [1 ]
机构
[1] Tohoku Univ, Grad Sch Life Sci, Dept Dev Biol & Neurosci, Sendai, Miyagi 9808578, Japan
关键词
chitinase; monolignol; pectin; polysaccharide; XTH; xyloglucan;
D O I
10.1093/pcp/pch151
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Monocotyledons and dicotyledons are distinct, not only in their body plans and developmental patterns, but also in the structural features of their cell walls. The recent completion of the rice (Oryza sativa) genomic sequence and publication of the sequence data, together with the completed database of the Arabidopsis thaliana genome, provide the first opportunity to compare the full complement of cell-wall-related genes from the two distinct classes of flowering plants. We made this comparison by exploiting the fact that Arabidopsis and rice have type I and type II walls, respectively, and therefore represent the two extremes in terms of the structural features of plant cell walls. In this review article, we classify all cell-wall-related genes into 32 gene families, and generate their phylogenetic trees. Using these data, we can phylogenetically compare individual genes of particular interest between Arabidopsis and rice. This comparative genome approach shows that the differences in wall architecture in the two plant groups actually mirror the diversity of the individual gene families involved in the cell-wall dynamics of the respective plant species. This study also identifies putative rice orthologs of genes with well-defined functions in Arabidopsis and other plant species.
引用
收藏
页码:1111 / 1121
页数:11
相关论文
共 64 条
[1]  
[Anonymous], PLANT CELL WALL
[2]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[3]   Current status of the sequence of the rice genome and prospects for finishing the first monocot genome [J].
Buell, CR .
PLANT PHYSIOLOGY, 2002, 130 (04) :1585-1586
[4]  
CAMPBELL P, 1999, PLANT J, V34, P327
[5]   Structure and biogenesis of the cell walls of grasses [J].
Carpita, NC .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1996, 47 :445-476
[6]   STRUCTURAL MODELS OF PRIMARY-CELL WALLS IN FLOWERING PLANTS - CONSISTENCY OF MOLECULAR-STRUCTURE WITH THE PHYSICAL-PROPERTIES OF THE WALLS DURING GROWTH [J].
CARPITA, NC ;
GIBEAUT, DM .
PLANT JOURNAL, 1993, 3 (01) :1-30
[7]  
CARPITA NC, 2000, BIOCH MOL BIOL PLANT, P25
[8]   Regulation of expansin gene expression affects growth and development in transgenic rice plants [J].
Choi, DS ;
Lee, Y ;
Cho, HT ;
Kende, H .
PLANT CELL, 2003, 15 (06) :1386-1398
[9]   The growing world of expansins [J].
Cosgrove, DJ ;
Li, LC ;
Cho, HT ;
Hoffmann-Benning, S ;
Moore, RC ;
Blecker, D .
PLANT AND CELL PHYSIOLOGY, 2002, 43 (12) :1436-1444
[10]   Loosening of plant cell walls by expansins [J].
Cosgrove, DJ .
NATURE, 2000, 407 (6802) :321-326