Quantum quincunx in cavity quantum electrodynamics

被引:143
作者
Sanders, BC [1 ]
Bartlett, SD
Tregenna, B
Knight, PL
机构
[1] Macquarie Univ, Dept Phys, Sydney, NSW 2109, Australia
[2] Macquarie Univ, Ctr Adv Comp Algorithms & Cryptog, Sydney, NSW 2109, Australia
[3] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Opt Sect, London SW7 2BW, England
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 04期
关键词
D O I
10.1103/PhysRevA.67.042305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce the quantum quincunx, which physically demonstrates the quantum walk and is analogous to Galton's quincunx for demonstrating the random walk by employing gravity to draw pellets through pegs on a board, thereby yielding a binomial distribution of final peg locations. In contradistinction to the theoretical studies of quantum walks over orthogonal lattice states, we introduce quantum walks over nonorthogonal lattice states (specifically, coherent states on a circle) to demonstrate that the key features of a quantum walk are observable albeit for strict parameter ranges. A quantum quincunx may be realized with current cavity quantum electrodynamics capabilities, and precise control over decoherence in such experiments allows a remarkable decrease in the position noise, or spread, with increasing decoherence.
引用
收藏
页数:4
相关论文
共 18 条
[1]   QUANTUM RANDOM-WALKS [J].
AHARONOV, Y ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1993, 48 (02) :1687-1690
[2]  
Andris Ambainis, 2001, P 33 ANN ACM S THEOR, P37, DOI DOI 10.1145/380752.380757
[3]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[4]   COHERENT STATES IN A FINITE-DIMENSIONAL BASIS - THEIR PHASE PROPERTIES AND RELATIONSHIP TO COHERENT STATES OF LIGHT [J].
BUZEK, V ;
WILSONGORDON, AD ;
KNIGHT, PL ;
LAI, WK .
PHYSICAL REVIEW A, 1992, 45 (11) :8079-8094
[5]  
Dorit Aharonov, 2001, P 33 ANN ACM S THEOR, P50, DOI DOI 10.1145/380752.380758
[7]  
Galton F., 1889, NATURAL INHERITANCE
[8]  
KEMPE J, QUANTPH0205083
[9]   SQUEEZED LIGHT [J].
LOUDON, R ;
KNIGHT, PL .
JOURNAL OF MODERN OPTICS, 1987, 34 (6-7) :709-759
[10]  
Loudon R., 2000, QUANTUM THEORY LIGHT