Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide

被引:173
作者
Obin, M
Shang, F
Gong, X
Handelman, G
Blumberg, J
Taylor, A
机构
[1] Tufts Univ, JMUSDA, HNRCA, Lab Nutr & Vis Res, Boston, MA 02111 USA
[2] Tufts Univ, JMUSDA, HNRCA, Antioxidants Res Lab, Boston, MA 02111 USA
关键词
ubiquitin-proteasome pathway; E1; E2; glutathione; diamide; ubiquitin-activating enzyme;
D O I
10.1096/fasebj.12.7.561
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ubiquitin-proteasome pathway (UPP) regulates critical cell processes, including the cell cycle, cytokine-induced gene expression, differentiation, and cell death. Recently we demonstrated that this pathway responds to oxidative stress in mammalian cells and proposed that activities of ubiquitin-activating enzyme (E1) and ubiquitin-conjugating enzymes (E2s) are regulated by cellular redox status (i.e., GSSG:GSH ratio). To test this hypothesis, we altered the GSSG:GSH ratio in retinal pigment epithelial cells with the thiol-specific oxidant, diamide, and assessed activities of the WP. Treatment of cells with diamide resulted in a dose-dependent increase in the GSSG:GSH ratio resulting from loss of GSH and a coincident increase in GSSG. Increases in the GSSG:GSH ratio from 0.02 in untreated cells to greater than or equal to 0.5 in diamide-treated cells were accompanied by dose-dependent reductions in the levels of endogenous Ub-protein conjugates, endogenous E1 similar to ubiquitin thiol esters, and de novo ubiquitin-conjugating activity. As determined by the ability to form E1-ubiquitin and EB-ubiquitin thiol esters, E1 and E2s were both inhibited by elevated GSSG:GSH ratios. Inhibition of E1 was associated with the formation of E1-protein mixed disulfides. Activities of E1 and E2s gradually recovered to preoxidation levels, coincident with gradual recovery of the GSSG:GSH ratio. These data support S-thiolation/dethiolation as a mechanism regulating E1 and E2 activities in response to oxidant insult. Ubiquitin-dependent proteolytic capacity was regulated by the GSSG:GSH ratio in a manner con consistent with altered ubiquitin-conjugating activity. However, ubiquitin-independent proteolysis was unaffected by changes in the GSSG:GSH ratio. Potential adaptive and pathological consequences of redox regulation of UPP activities are discussed.
引用
收藏
页码:561 / 569
页数:9
相关论文
共 38 条
[1]   Redox regulation of the DNA binding activity in transcription factor PEBP2 - The roles of two conserved cysteine residues [J].
Akamatsu, Y ;
Ohno, T ;
Hirota, K ;
Kagoshima, H ;
Yodoi, J ;
Shigesada, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (23) :14497-14500
[2]   Protein oxidation in aging, disease, and oxidative stress [J].
Berlett, BS ;
Stadtman, ER .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20313-20316
[3]   ENZYMATIC REDUCTION OF PROTEIN-BOUND METHIONINE SULFOXIDE [J].
BROT, N ;
WEISSBACH, L ;
WERTH, J ;
WEISSBACH, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1981, 78 (04) :2155-2158
[4]   RETRACTED: Cysteine and glutathione secretion in response to protein disulfide bond formation in the ER (Retracted Article) [J].
Carelli, S ;
Ceriotti, A ;
Cabibbo, A ;
Fassina, G ;
Ruvo, M ;
Sitia, R .
SCIENCE, 1997, 277 (5332) :1681-1684
[5]   Site-specific phosphorylation of I kappa B alpha by a novel ubiquitination-dependent protein kinase activity [J].
Chen, ZJ ;
Parent, L ;
Maniatis, T .
CELL, 1996, 84 (06) :853-862
[6]  
CHEN ZJ, 1991, J BIOL CHEM, V266, P15698
[7]   POLYUBIQUITIN GENE-EXPRESSION CONTRIBUTES TO OXIDATIVE STRESS RESISTANCE IN RESPIRATORY YEAST (SACCHAROMYCES-CEREVISIAE) [J].
CHENG, L ;
WATT, R ;
PIPER, PW .
MOLECULAR AND GENERAL GENETICS, 1994, 243 (03) :358-362
[8]   THE UBIQUITIN-MEDIATED PROTEOLYTIC PATHWAY - MECHANISMS OF RECOGNITION OF THE PROTEOLYTIC SUBSTRATE AND INVOLVEMENT IN THE DEGRADATION OF NATIVE CELLULAR PROTEINS [J].
CIECHANOVER, A ;
SCHWARTZ, AL .
FASEB JOURNAL, 1994, 8 (02) :182-191
[9]  
Di Monte DA, 1992, ANN NEUROL, V32, P111
[10]  
FARISS MW, 1987, METHOD ENZYMOL, V143, P101