Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action

被引:118
作者
Zik, M [1 ]
Irish, VF [1 ]
机构
[1] Yale Univ, Osborn Mem Labs, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
关键词
D O I
10.1105/tpc.006353
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identifying the genes regulated by the floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI) is crucial for understanding the molecular mechanisms that lead to petal and stamen formation. We have used microarray analysis to conduct a broad survey of genes whose expression is affected by AP3 and PI activity. DNA microarrays; consisting of 9216 Arabidopsis ESTs were screened with probes corresponding to mRNAs from different mutant and transgenic lines that misexpress AP3 and/or PI. The microarray results were further confirmed by RNA gel blot analyses. Our results suggest that AP3 and PI regulate a relatively small number of genes, implying that many genes used in petal and stamen development are not tissue specific and likely have roles in other processes as well. We recovered genes similar to previously identified petal- and stamen-expressed genes as well as genes that were not implicated previously in petal and stamen development. A very low percentage of the genes recovered encoded transcription factors. This finding suggests that AP3 and PI act relatively directly to regulate the genes required for the basic cellular processes responsible for petal and stamen morphogenesis.
引用
收藏
页码:207 / 222
页数:16
相关论文
共 104 条
[1]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[2]   CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation [J].
Becraft, PW ;
Stinard, PS ;
McCarty, DR .
SCIENCE, 1996, 273 (5280) :1406-1409
[3]   REGULATED GENES IN TRANSGENIC PLANTS [J].
BENFEY, PN ;
CHUA, NH .
SCIENCE, 1989, 244 (4901) :174-181
[4]   The petunia homologue of tomato gast1: Transcript accumulation coincides with gibberellin-induced corolla cell elongation [J].
BenNissan, G ;
Weiss, D .
PLANT MOLECULAR BIOLOGY, 1996, 32 (06) :1067-1074
[5]   Prediction of glycosylphosphatidylinositol-anchored proteins in arabidopsis. A genomic analysis [J].
Borner, GHH ;
Sherrier, DJ ;
Stevens, TJ ;
Arkin, IT ;
Dupree, P .
PLANT PHYSIOLOGY, 2002, 129 (02) :486-499
[6]   GENES DIRECTING FLOWER DEVELOPMENT IN ARABIDOPSIS [J].
BOWMAN, JL ;
SMYTH, DR ;
MEYEROWITZ, EM .
PLANT CELL, 1989, 1 (01) :37-52
[7]   CHARACTERIZATION OF A GENE FAMILY ABUNDANTLY EXPRESSED IN OENOTHERA-ORGANENSIS POLLEN THAT SHOWS SEQUENCE SIMILARITY TO POLYGALACTURONASE [J].
BROWN, SM ;
CROUCH, ML .
PLANT CELL, 1990, 2 (03) :263-274
[8]  
Brownlee C, 1998, Symp Soc Exp Biol, V51, P33
[9]   Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions [J].
Campbell, P ;
Braam, J .
TRENDS IN PLANT SCIENCE, 1999, 4 (09) :361-366
[10]   FLORAL HOMEOTIC MUTATIONS PRODUCED BY TRANSPOSON-MUTAGENESIS IN ANTIRRHINUM-MAJUS [J].
CARPENTER, R ;
COEN, ES .
GENES & DEVELOPMENT, 1990, 4 (09) :1483-1493