Resonant codimension two bifurcation in a neutral functional differential equation

被引:11
作者
Campbell, SA [1 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[2] McGill Univ, Ctr Nonlinear Dynam Physiol & Med, Quebec City, PQ, Canada
关键词
neutral functional differential equation; codimension two bifurcation; Hopf bifurcation; linear stability analysis; characteristic equation;
D O I
10.1016/S0362-546X(97)00317-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:4577 / 4584
页数:8
相关论文
共 16 条
[1]   STABILITY CRITERIA FOR SECOND-ORDER DYNAMICAL SYSTEMS WITH TIME LAG [J].
BHATT, SJ ;
HSU, CS .
JOURNAL OF APPLIED MECHANICS, 1966, 33 (01) :113-&
[2]  
CAMPBELL S, 1996, J DYN DIFF EQS
[3]   Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback [J].
Campbell, SA ;
Belair, J ;
Ohira, T ;
Milton, J .
CHAOS, 1995, 5 (04) :640-645
[4]  
CAMPBELL SA, 1995, J DYN DIFFER EQU, V7, DOI DOI 10.1007/BF02218819
[5]   DISCRETE DELAY, DISTRIBUTED DELAY AND STABILITY SWITCHES [J].
COOKE, KL ;
GROSSMAN, Z .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 86 (02) :592-627
[6]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
[7]  
Hale J. K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[8]   STABILITY CHARTS FOR SECOND-ORDER DYNAMICAL SYSTEMS WITH TIME LAG [J].
HSU, CS ;
BHATT, SJ .
JOURNAL OF APPLIED MECHANICS, 1966, 33 (01) :119-&
[9]  
IOOSS G, 1975, TURBULENCE NAVIER ST, V565, P69
[10]   THE DOUBLE HOPF-BIFURCATION WITH 2-1 RESONANCE [J].
KNOBLOCH, E ;
PROCTOR, MRE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 415 (1848) :61-90