VEGF increases paracellular transport without altering the solvent-drag reflection coefficient

被引:11
作者
DeMaio, L
Antonetti, DA
Scaduto, RC
Gardner, TW
Tarbell, JM
机构
[1] CUNY City Coll, Dept Biomed Engn, New York, NY 10031 USA
[2] Penn State Univ, Coll Med, Dept Cellular & Mol Physiol, Hershey, PA 17033 USA
[3] Penn State Univ, Coll Med, Dept Ophthalmol, Hershey, PA 17033 USA
关键词
VEGF; permeability; hydraulic conductivity; reflection coefficient;
D O I
10.1016/j.mvr.2004.06.007
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Vascular endothelial growth factor (VEGF) increases microvascular permeability and has been implicated in the development of numerous pathologies including diabetic retinopathy (DR), hypoxia/ischemia, and tumor biology. The transport pathways by which water and solutes cross the endothelium in response to VEGF, however, are not completely understood. We measured, in real time, bovine retinal endothelial cell (BREC) hydraulic conductivity (Lp), 70 kDa dextran permeability (Pe), and the solvent-drag reflection coefficient (a) before and after addition of 50 ng/ml VEGF. The diffusional permeability coefficient for dextran (Pd) was measured before pressure gradient application. The sudden application of a 10-cm H2O hydrostatic pressure gradient induced water and solute fluxes that decayed to steady-state values after approximately 2 h. Subsequently, the addition of VEGF significantly increased Lp and Pe by 4.3-fold +/- 0.7-fold and 3.0-fold 0.3 +/- fold, respectively, after 110 min; however, the reflection coefficient remained approximately constant throughout the experiment (approximately 0.8). These observations suggest that water and dextran utilize common paracellular channels across BREC monolayers. Furthermore, the addition of VEGF increases the number or availability of channels but does not alter the selectivity of the monolayer to 70 kDa dextran. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 51 条
[1]   INCREASED VASCULAR ENDOTHELIAL GROWTH-FACTOR LEVELS IN THE VITREOUS OF EYES WITH PROLIFERATIVE DIABETIC-RETINOPATHY [J].
ADAMIS, AP ;
MILLER, JW ;
BERNAL, MT ;
DAMICO, DJ ;
FOLKMAN, J ;
YEO, TK ;
YEO, KT .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 1994, 118 (04) :445-450
[2]  
ADAMSON RH, 1993, J PHYSIOL-LONDON, V466, P303
[3]   SUPPRESSION OF RETINAL NEOVASCULARIZATION IN-VIVO BY INHIBITION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR (VEGF) USING SOLUBLE VEGF-RECEPTOR CHIMERIC PROTEINS [J].
AIELLO, LP ;
PIERCE, EA ;
FOLEY, ED ;
TAKAGI, H ;
CHEN, H ;
RIDDLE, L ;
FERRARA, N ;
KING, GL ;
SMITH, LEH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (23) :10457-10461
[4]   VASCULAR ENDOTHELIAL GROWTH-FACTOR IN OCULAR FLUID OF PATIENTS WITH DIABETIC-RETINOPATHY AND OTHER RETINAL DISORDERS [J].
AIELLO, LP ;
AVERY, RL ;
ARRIGG, PG ;
KEYT, BA ;
JAMPEL, HD ;
SHAH, ST ;
PASQUALE, LR ;
THIEME, H ;
IWAMOTO, MA ;
PARK, JE ;
NGUYEN, HV ;
AIELLO, LM ;
FERRARA, N ;
KING, GL .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (22) :1480-1487
[5]   CHARACTERIZATION OF ZO-1, A PROTEIN-COMPONENT OF THE TIGHT JUNCTION FROM MOUSE-LIVER AND MADIN-DARBY CANINE KIDNEY-CELLS [J].
ANDERSON, JM ;
STEVENSON, BR ;
JESAITIS, LA ;
GOODENOUGH, DA ;
MOOSEKER, MS .
JOURNAL OF CELL BIOLOGY, 1988, 106 (04) :1141-1149
[6]   Cell signalling: MAGUK magic [J].
Anderson, JM .
CURRENT BIOLOGY, 1996, 6 (04) :382-384
[7]   Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content - Vascular endothelial growth factor decreases occludin in retinal endothelial cells [J].
Antonetti, DA ;
Barber, AJ ;
Khin, S ;
Lieth, E ;
Tarbell, JM ;
Gardner, TW .
DIABETES, 1998, 47 (12) :1953-1959
[8]   Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1 - A potential mechanism for vascular permeability in diabetic retinopathy and tumors [J].
Antonetti, DA ;
Barber, AJ ;
Hollinger, LA ;
Wolpert, EB ;
Gardner, TW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (33) :23463-23467
[9]   AN INVITRO SYSTEM FOR MEASURING ENDOTHELIAL PERMEABILITY UNDER HYDROSTATIC-PRESSURE [J].
BAETSCHER, M ;
BRUNE, K .
EXPERIMENTAL CELL RESEARCH, 1983, 148 (02) :541-547
[10]   Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein [J].
Balda, MS ;
Whitney, JA ;
Flores, C ;
Gonzalez, S ;
Cereijido, M ;
Matter, K .
JOURNAL OF CELL BIOLOGY, 1996, 134 (04) :1031-1049